J. Cleary-goldman, Impact of Maternal Age on Obstetric Outcome, Obstetrics & Gynecology, vol.105, issue.5, Part 1, pp.983-990, 2005.
DOI : 10.1097/01.AOG.0000158118.75532.51

S. Ooki, Maternal age and birth defects after the use of assisted reproductive technology in Japan, Int J Womens Health, vol.5, pp.65-77, 2004.

A. O. Odibo, D. Nelson, D. M. Stamilio, H. M. Sehdev, and G. A. Macones, Advanced Maternal Age Is an Independent Risk Factor for Intrauterine Growth Restriction, American Journal of Perinatology, vol.23, issue.5, pp.325-328, 2006.
DOI : 10.1055/s-2006-947164

H. C. Glass, Outcomes for Extremely Premature Infants, Anesthesia & Analgesia, vol.120, issue.6, pp.1337-1351, 2015.
DOI : 10.1213/ANE.0000000000000705

P. Anderson and L. W. Doyle, Neurobehavioral Outcomes of School-age Children Born Extremely Low Birth Weight or Very Preterm in the 1990s, JAMA, vol.289, issue.24, pp.3264-3272, 2003.
DOI : 10.1001/jama.289.24.3264

S. Johnson, Psychiatric Disorders in Extremely Preterm Children, Journal of the American Academy of Child & Adolescent Psychiatry, vol.49, issue.5, pp.453-463, 2010.
DOI : 10.1097/00004583-201005000-00006

T. A. Levine, Early Childhood Neurodevelopment After Intrauterine Growth Restriction: A Systematic Review, PEDIATRICS, vol.135, issue.1, pp.126-141, 2015.
DOI : 10.1542/peds.2014-1143

M. Kovo, L. Schreiber, and J. Bar, Placental vascular pathology as a mechanism of disease in pregnancy complications, Thrombosis Research, vol.131, pp.18-21, 2013.
DOI : 10.1016/S0049-3848(13)70013-6

M. Delcour, Neuroanatomical, Sensorimotor and Cognitive Deficits in Adult Rats with White Matter Injury Following Prenatal Ischemia, Brain Pathology, vol.162, issue.1, pp.1-16, 2012.
DOI : 10.1111/j.1750-3639.2011.00504.x

URL : https://hal.archives-ouvertes.fr/hal-01441849

N. Salmaso, B. Jablonska, J. Scafidi, F. M. Vaccarino, and V. Gallo, Neurobiology of premature brain injury, Nature Neuroscience, vol.22, issue.3, pp.341-346, 2014.
DOI : 10.1002/stem.1135

M. Shibata, R. Ohtani, M. Ihara, and H. Tomimoto, White Matter Lesions and Glial Activation in a Novel Mouse Model of Chronic Cerebral Hypoperfusion, Stroke, vol.35, issue.11, pp.2598-2603, 2004.
DOI : 10.1161/01.STR.0000143725.19053.60

Y. Hirabayashi and Y. Gotoh, Stage-dependent fate determination of neural precursor cells in mouse forebrain, Neuroscience Research, vol.51, issue.4, pp.331-336, 2005.
DOI : 10.1016/j.neures.2005.01.004

C. Fung, Uteroplacental insufficiency alters rat hippocampal cellular phenotype in conjunction with ErbB receptor expression, Pediatric Research, vol.124, issue.1, pp.2-9, 2012.
DOI : 10.1111/j.1365-2818.1987.tb02837.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612538

L. L. Jantzie, C. J. Corbett, D. J. Firl, and S. Robinson, Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia???Ischemia, Cerebral Cortex, vol.25, issue.9, pp.2683-2695, 2015.
DOI : 10.1093/cercor/bhu066

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537428

P. Olivier, Moderate growth restriction: Deleterious and protective effects on white matter damage, Neurobiology of Disease, vol.26, issue.1, pp.253-263, 2007.
DOI : 10.1016/j.nbd.2007.01.001

M. V. Reid, Delayed Myelination in an Intrauterine Growth Retardation Model Is Mediated by Oxidative Stress Upregulating Bone Morphogenetic Protein 4, Journal of Neuropathology & Experimental Neurology, vol.71, issue.7, pp.640-653, 2012.
DOI : 10.1097/NEN.0b013e31825cfa81

L. Tashima, M. Nakata, K. Anno, N. Sugino, and H. Kato, Prenatal Influence of Ischemia-Hypoxia-Induced Intrauterine Growth Retardation on Brain Development and Behavioral Activity in Rats, Neonatology, vol.80, issue.1, pp.81-87, 2001.
DOI : 10.1159/000047125

M. Janot, M. L. Cortes-dubly, S. Rodriguez, and U. Huynh-do, Bilateral uterine vessel ligation as a model of intrauterine growth restriction in mice, Reproductive Biology and Endocrinology, vol.12, issue.1, p.62, 2014.
DOI : 10.1186/1477-7827-12-62

S. Pundik, Regional metabolic status of the E???18 rat fetal brain following transient hypoxia/ischemia, Metabolic Brain Disease, vol.81, issue.4, pp.309-317, 2006.
DOI : 10.1007/s11011-006-9031-4

X. W. Qu, Unilateral uterine ischemia/reperfusion-induced bilateral fetal loss and fetal growth restriction in a murine model require intact complement component 5, Journal of Reproductive Immunology, vol.95, issue.1-2, pp.27-35, 2012.
DOI : 10.1016/j.jri.2012.04.005

S. Tan, Model of Cerebral Palsy in the Perinatal Rabbit, Journal of Child Neurology, vol.18, issue.12, pp.972-979, 2005.
DOI : 10.1177/08830738050200120801

M. Tanaka, Experimental growth retardation produced by transient period of uteroplacental ischemia in pregnant Sprague-Dawley rats, American Journal of Obstetrics and Gynecology, vol.171, issue.5, pp.1231-1234, 1994.
DOI : 10.1016/0002-9378(94)90138-4

J. Mishina, Long-term Outcome of Very Low Birth Infant, Acta Obstetrica et Gynaeclogica Japonica, vol.58, 2006.

T. Rogne, Fetal Growth, Cognitive Function, and Brain Volumes in Childhood and Adolescence, Obstetrics & Gynecology, vol.125, issue.3, pp.673-682, 2015.
DOI : 10.1097/AOG.0000000000000694

L. C. Tzarouchi, Body growth and brain development in premature babies: an MRI study, Pediatric Radiology, vol.31, issue.3, pp.297-304, 2014.
DOI : 10.1007/s00247-013-2822-y

J. J. Volpe, Brain injury in the premature infant: Overview of clinical aspects, neuropathology, and pathogenesis, Seminars in Pediatric Neurology, vol.5, issue.3, pp.135-151, 1998.
DOI : 10.1016/S1071-9091(98)80030-2

R. L. Haynes, Potential Neuronal Repair in Cerebral White Matter Injury in the Human Neonate, Pediatric Research, vol.151, issue.1, pp.62-67, 2011.
DOI : 10.1203/PDR.0b013e3181ff3792

O. Khwaja and J. J. Volpe, Pathogenesis of cerebral white matter injury of prematurity, Archives of Disease in Childhood - Fetal and Neonatal Edition, vol.93, issue.2, pp.153-161, 2008.
DOI : 10.1136/adc.2006.108837

S. A. Back, Cerebral White and Gray Matter Injury in Newborns, Clinics in Perinatology, vol.41, issue.1, pp.1-24, 2014.
DOI : 10.1016/j.clp.2013.11.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947650

Y. Futagi, Y. Suzuki, and M. Goto, Clinical significance of plantar grasp response in infants, Pediatric Neurology, vol.20, issue.2, pp.111-115, 1999.
DOI : 10.1016/S0887-8994(98)00103-9

P. Shaw, Longitudinal Mapping of Cortical Thickness and Clinical Outcome in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder, Archives of General Psychiatry, vol.63, issue.5, pp.540-549, 2006.
DOI : 10.1001/archpsyc.63.5.540

I. Cetin and G. Alvino, Intrauterine Growth Restriction: Implications for Placental Metabolism and Transport. A Review, Placenta, vol.30, pp.77-82, 2009.
DOI : 10.1016/j.placenta.2008.12.006

A. Zarate, R. Saucedo, J. Valencia, L. Manuel, and M. Hernandez, Early Disturbed Placental Ischemia and Hypoxia Creates Immune Alteration and Vascular Disorder Causing Preeclampsia, Archives of Medical Research, vol.45, issue.7, pp.519-524, 2014.
DOI : 10.1016/j.arcmed.2014.10.003

S. Ramakrishnan, V. Anand, and S. Roy, Vascular Endothelial Growth Factor Signaling in Hypoxia and Inflammation, Journal of Neuroimmune Pharmacology, vol.289, issue.2, pp.142-160, 2014.
DOI : 10.1007/s11481-014-9531-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048289

M. Parra-cordero, Immunohistochemical expression of von Willebrand factor in the preeclamptic placenta, Journal of Molecular Histology, vol.61, issue.Suppl 2, pp.459-465, 2011.
DOI : 10.1007/s10735-011-9351-5

T. Chaiworapongsa, The use of angiogenic biomarkers in maternal blood to identify which SGA fetuses will require a preterm delivery and mothers who will develop pre-eclampsia, The Journal of Maternal-Fetal & Neonatal Medicine, vol.10, issue.8, pp.1214-1228, 2016.
DOI : 10.1186/1471-2288-11-13

I. L. Aye, T. L. Powell, and T. Jansson, Review: Adiponectin ??? The missing link between maternal adiposity, placental transport and fetal growth?, Placenta, vol.34, pp.40-45, 2013.
DOI : 10.1016/j.placenta.2012.11.024

S. Lager and T. L. Powell, Regulation of Nutrient Transport across the Placenta, Journal of Pregnancy, vol.62, issue.5, p.179827, 2012.
DOI : 10.1016/j.placenta.2009.12.009

H. N. Jones, T. Jansson, and T. L. Powell, Full-Length Adiponectin Attenuates Insulin Signaling and Inhibits Insulin-Stimulated Amino Acid Transport in Human Primary Trophoblast Cells, Diabetes, vol.59, issue.5, pp.1161-1170, 2010.
DOI : 10.2337/db09-0824

T. L. Young-pearse, A Critical Function for -Amyloid Precursor Protein in Neuronal Migration Revealed by In Utero RNA Interference, Journal of Neuroscience, vol.27, issue.52, pp.14459-14469, 2007.
DOI : 10.1523/JNEUROSCI.4701-07.2007

M. Nicolas and B. A. Hassan, Amyloid precursor protein and neural development, Development, vol.141, issue.13, pp.2543-2548, 2014.
DOI : 10.1242/dev.108712

N. Jutapakdeegul, S. Afadlal, N. Polaboon, P. Phansuwan-pujito, and P. Govitrapong, Repeated restraint stress and corticosterone injections during late pregnancy alter GAP-43 expression in the hippocampus and prefrontal cortex of rat pups, International Journal of Developmental Neuroscience, vol.28, issue.1, pp.83-90, 2010.
DOI : 10.1016/j.ijdevneu.2009.09.003

C. F. Landry, G. O. Ivy, and I. R. Brown, Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed by in situ hybridization, Journal of Neuroscience Research, vol.9, issue.2, pp.194-203, 1990.
DOI : 10.1002/jnr.490250207

P. S. Mcquillen and D. M. Ferriero, Perinatal Subplate Neuron Injury: Implications for Cortical Development and Plasticity, Brain Pathology, vol.24, issue.3, pp.250-260, 2005.
DOI : 10.1111/j.1750-3639.2005.tb00528.x

A. Bignami and D. Dahl, Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein, The Journal of Comparative Neurology, vol.72, issue.1, pp.27-38, 1974.
DOI : 10.1002/cne.901530104

M. Tsuji, A novel reproducible model of neonatal stroke in mice: Comparison with a hypoxia???ischemia model, Experimental Neurology, vol.247, pp.218-225, 2013.
DOI : 10.1016/j.expneurol.2013.04.015

Y. Sato, Hypoxia???ischemia induces hypo-phosphorylation of collapsin response mediator protein 2 in a neonatal rat model of periventricular leukomalacia, Brain Research, vol.1386, pp.165-174, 2011.
DOI : 10.1016/j.brainres.2011.02.027