P. J. Harvey, Y. Li, X. Li, and D. J. Bennett, Persistent Sodium Currents and Repetitive Firing in Motoneurons of the Sacrocaudal Spinal Cord of Adult Rats, Journal of Neurophysiology, vol.96, issue.3, pp.1141-1157, 2006.
DOI : 10.1152/jn.00335.2005

Y. Li and D. J. Bennett, Persistent Sodium and Calcium Currents Cause Plateau Potentials in Motoneurons of Chronic Spinal Rats, Journal of Neurophysiology, vol.90, issue.2, pp.857-869, 2003.
DOI : 10.1152/jn.00236.2003

A. Urbani and O. Belluzzi, Riluzole inhibits the persistent sodium current in mammalian CNS neurons, European Journal of Neuroscience, vol.85, issue.10, pp.3567-3574, 2000.
DOI : 10.1046/j.1460-9568.2000.00242.x

P. Svenningsen, Physiological regulation of epithelial sodium channel by proteolysis, Current Opinion in Nephrology and Hypertension, vol.20, issue.5, pp.529-533, 2011.
DOI : 10.1097/MNH.0b013e328348bcc7

V. Vallet, A. Chraibi, H. P. Gaeggeler, J. D. Horisberger, and B. C. Rossier, An epithelial serine protease activates the amiloride-sensitive sodium channel, Nature, vol.389, pp.607-610, 1997.

C. M. Armstrong, F. Bezanilla, and E. Rojas, Destruction of Sodium Conductance Inactivation in Squid Axons Perfused with Pronase, The Journal of General Physiology, vol.62, issue.4, pp.375-391, 1973.
DOI : 10.1085/jgp.62.4.375

A. Undrovinas, V. A. Maltsev, and H. N. Sabbah, Calpain Inhibition Reduces Amplitude and Accelerates Decay of the Late Sodium Current in Ventricular Myocytes from Dogs with Chronic Heart Failure, PLoS ONE, vol.14, issue.4, p.54436, 2013.
DOI : 10.1371/journal.pone.0054436.t001

K. C. Murray, M. J. Stephens, E. W. Ballou, C. J. Heckman, and D. J. Bennett, Motoneuron Excitability and Muscle Spasms Are Regulated by 5-HT2B and 5-HT2C Receptor Activity, Journal of Neurophysiology, vol.105, issue.2, pp.731-748, 2011.
DOI : 10.1152/jn.00774.2010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059173

J. Palecek, M. B. Lips, and B. Keller, Calcium dynamics and buffering in motoneurones of the mouse spinal cord, The Journal of Physiology, vol.469, issue.2, pp.485-502, 1999.
DOI : 10.1111/j.1469-7793.1999.00485.x

J. J. Kuo, R. H. Lee, L. Zhang, and C. J. Heckman, Essential role of the persistent sodium current in spike initiation during slowly rising inputs in mouse spinal neurones, The Journal of Physiology, vol.85, issue.Suppl., pp.819-834, 2006.
DOI : 10.1113/jphysiol.2006.107094

K. M. Schoch, Brain injury-induced proteolysis is reduced in a novel calpastatin-overexpressing transgenic mouse, Journal of Neurochemistry, vol.14, issue.6, pp.909-920, 2013.
DOI : 10.1111/jnc.12144

A. S. Hunanyan, Alterations of action potentials and the localization of Nav1.6 sodium channels in spared axons after hemisection injury of the spinal cord in adult rats, Journal of Neurophysiology, vol.105, issue.3, pp.1033-1044, 2011.
DOI : 10.1152/jn.00810.2010

B. C. Hains and S. G. Waxman, Sodium channel expression and the molecular pathophysiology of pain after SCI, Prog. Brain Res, vol.161, pp.195-203, 2007.
DOI : 10.1016/S0079-6123(06)61013-3

M. J. Craner, Sodium channels contribute to microglia/macrophage activation and function in EAE and MS, Glia, vol.96, issue.2, pp.220-229, 2005.
DOI : 10.1002/glia.20112

H. Y. Zhou, N-Methyl-D-aspartate Receptor- and Calpain-mediated Proteolytic Cleavage of K+-Cl- Cotransporter-2 Impairs Spinal Chloride Homeostasis in Neuropathic Pain, Journal of Biological Chemistry, vol.287, issue.40, pp.33853-33864, 2012.
DOI : 10.1074/jbc.M112.395830

N. L. Banik, D. C. Matzelle, G. Gantt-wilford, A. Osborne, and E. Hogan, Increased calpain content and progressive degradation of neurofilament protein in spinal cord injury, Brain Research, vol.752, issue.1-2, pp.301-306, 1997.
DOI : 10.1016/S0006-8993(96)01488-6

J. E. Springer, R. D. Azbill, S. E. Kennedy, J. George, and J. W. Geddes, Rapid Calpain I Activation and Cytoskeletal Protein Degradation Following Traumatic Spinal Cord Injury: Attenuation with Riluzole Pretreatment, Journal of Neurochemistry, vol.69, issue.4, pp.1592-1600, 1997.
DOI : 10.1046/j.1471-4159.1997.69041592.x

P. A. Schumacher, J. H. Eubanks, and M. G. Fehlings, Increased calpain I-mediated proteolysis, and preferential loss of dephosphorylated NF200, following traumatic spinal cord injury, Neuroscience, vol.91, issue.2, pp.733-744, 1999.
DOI : 10.1016/S0306-4522(98)00552-1

S. K. Ray, Calpain activity and translational expression increased in spinal cord injury, Brain Research, vol.816, issue.2, pp.375-380, 1999.
DOI : 10.1016/S0006-8993(98)01128-7

Z. Li, E. L. Hogan, and N. L. Banik, Role of calpain in spinal cord injury: Increased calpain immunoreactivity in rat spinal cord after impact trauma, Neurochemical Research, vol.27, issue.2, pp.441-448, 1996.
DOI : 10.1007/BF02527708

C. G. Yu, Calpain 1 Knockdown Improves Tissue Sparing and Functional Outcomes after Spinal Cord Injury in Rats, Journal of Neurotrauma, vol.30, issue.6, pp.427-433, 2013.
DOI : 10.1089/neu.2012.2561

S. Du, Calcium Influx and Activation of Calpain I Mediate Acute Reactive Gliosis in Injured Spinal Cord, Experimental Neurology, vol.157, issue.1, pp.96-105, 1999.
DOI : 10.1006/exnr.1999.7041

D. C. Shields, K. E. Schaecher, E. L. Hogan, and N. L. Banik, Calpain activity and expression increased in activated glial and inflammatory cells in penumbra of spinal cord injury lesion, Journal of Neuroscience Research, vol.253, issue.2, pp.146-150, 2000.
DOI : 10.1002/1097-4547(20000715)61:2<146::AID-JNR5>3.0.CO;2-C

J. Wienecke, A. C. Westerdahl, H. Hultborn, O. Kiehn, and J. Ryge, Global Gene Expression Analysis of Rodent Motor Neurons Following Spinal Cord Injury Associates Molecular Mechanisms With Development of Postinjury Spasticity, Journal of Neurophysiology, vol.103, issue.2, pp.761-778, 2010.
DOI : 10.1152/jn.00609.2009

A. Cifra, G. L. Mazzone, and A. Nistri, Riluzole, The Neuroscientist, vol.97, issue.2, pp.137-144, 2013.
DOI : 10.1177/1073858412444932

R. D. Theiss, T. G. Hornby, W. Z. Rymer, and B. D. Schmit, Riluzole decreases flexion withdrawal reflex but not voluntary ankle torque in human chronic spinal cord injury, Journal of Neurophysiology, vol.105, issue.6, pp.2781-2790, 2011.
DOI : 10.1152/jn.00570.2010

I. Zijdewind and C. K. Thomas, Firing patterns of spontaneously active motor units in spinal cord-injured subjects, The Journal of Physiology, vol.89, issue.7, pp.1683-1697, 2012.
DOI : 10.1113/jphysiol.2011.220103

P. H. Kitzman, Effectiveness of riluzole in suppressing spasticity in the spinal cord injured rat, Neuroscience Letters, vol.455, issue.2, pp.150-153, 2009.
DOI : 10.1016/j.neulet.2009.03.016

A. Lampert, B. C. Hains, and S. G. Waxman, Upregulation of persistent and ramp sodium current in dorsal horn neurons after spinal cord injury, Experimental Brain Research, vol.72, issue.4, pp.660-666, 2006.
DOI : 10.1007/s00221-006-0511-x

A. Hama and J. Sagen, Antinociceptive Effect of Riluzole in Rats with Neuropathic Spinal Cord Injury Pain, Journal of Neurotrauma, vol.28, issue.1, pp.127-134, 2011.
DOI : 10.1089/neu.2010.1539

R. G. Grossman, A Prospective, Multicenter, Phase I Matched-Comparison Group Trial of Safety, Pharmacokinetics, and Preliminary Efficacy of Riluzole in Patients with Traumatic Spinal Cord Injury, Journal of Neurotrauma, vol.31, issue.3, pp.239-255, 2014.
DOI : 10.1089/neu.2013.2969

S. K. Ray and N. L. Banik, Calpain and Its Involvement in the Pathophysiology of CNS Injuries and Diseases: Therapeutic Potential of Calpain Inhibitors for Prevention of Neurodegeneration, Current Drug Target -CNS & Neurological Disorders, vol.2, issue.3, pp.173-189, 2003.
DOI : 10.2174/1568007033482887

C. G. Yu, A. Joshi, and J. W. Geddes, Intraspinal MDL28170 Microinjection Improves Functional and Pathological Outcome following Spinal Cord Injury, Journal of Neurotrauma, vol.25, issue.7, pp.833-840, 2008.
DOI : 10.1089/neu.2007.0490

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946867

K. K. Wang, Developing selective inhibitors of calpain, Trends in Pharmacological Sciences, vol.11, issue.4, pp.139-142, 1990.
DOI : 10.1016/0165-6147(90)90060-L

S. Mehdi, Cell-penetrating inhibitors of calpain, Trends in Biochemical Sciences, vol.16, pp.150-153, 1991.
DOI : 10.1016/0968-0004(91)90058-4

D. E. Goll, V. F. Thompson, H. Li, W. Wei, and J. Cong, The Calpain System, Physiological Reviews, vol.83, issue.3, pp.731-801, 2003.
DOI : 10.1152/physrev.00029.2002