A. Acevedo-arozena, B. Kalmar, S. Essa, T. Ricketts, P. Joyce et al., A comprehensive assessment of the SOD1G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis, Disease Models & Mechanisms, vol.4, issue.5, pp.686-700, 2011.
DOI : 10.1242/dmm.007237

A. Aguilera-gomez and C. Rabouille, Intra-Golgi Transport, Encyclopedia of Cell Biology, pp.354-362, 2015.
DOI : 10.1016/B978-0-12-394447-4.20034-5

P. Amayed, D. Pantaloni, and M. Carlier, The Effect of Stathmin Phosphorylation on Microtubule Assembly Depends on Tubulin Critical Concentration, Journal of Biological Chemistry, vol.277, issue.25, pp.22718-22742, 2002.
DOI : 10.1074/jbc.M111605200

J. Atkin, M. Farg, K. Soo, A. Walker, M. Halloran et al., Mutant SOD1 inhibits ER-Golgi transport in amyotrophic lateral sclerosis, Journal of Neurochemistry, vol.40, issue.1, pp.190-204, 2014.
DOI : 10.1111/jnc.12493

S. Bellouze, M. Schaefer, D. Buttigieg, G. Baillat, C. Rabouille et al., Golgi fragmentation in pmn mice is due to a defective ARF1/TBCE cross-talk that coordinates COPI vesicle formation and tubulin polymerization, Human Molecular Genetics, vol.23, issue.22, pp.5961-75, 2014.
DOI : 10.1093/hmg/ddu320

L. Bruijn, M. Becher, M. Lee, K. Anderson, N. Jenkins et al., ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions, Neuron, vol.18, issue.2, pp.327-365, 1997.
DOI : 10.1016/S0896-6273(00)80272-X

N. Cashman, H. Durham, J. Blusztajn, K. Oda, T. Tabira et al., Neuroblastoma ?? spinal cord (NSC) hybrid cell lines resemble developing motor neurons, Developmental Dynamics, vol.319, issue.3, pp.209-230, 1992.
DOI : 10.1002/aja.1001940306

K. Chabin-brion, J. Marceiller, F. Perez, C. Settegrana, A. Drechou et al., The Golgi Complex Is a Microtubule-organizing Organelle, Molecular Biology of the Cell, vol.12, issue.7, pp.2047-60, 2001.
DOI : 10.1091/mbc.12.7.2047

S. Chauvin, F. Poulain, S. Ozon, and A. Sobel, Palmitoylation of stathmin family proteins domain A controls Golgi versus mitochondrial subcellular targeting, Biology of the Cell, vol.268, issue.10, pp.577-89, 2008.
DOI : 10.1042/BC20070119

S. Chauvin and A. Sobel, Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration, Progress in Neurobiology, vol.126, pp.1-18, 2015.
DOI : 10.1016/j.pneurobio.2014.09.002

Y. Chen, M. Lin, H. Yao, H. Wang, A. Zhang et al., Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin, Hepatology, vol.172, issue.1, pp.200-208, 2007.
DOI : 10.1002/hep.21668

P. De-la-grange, M. Dutertre, M. Correa, and D. Auboeuf, A new advance in alternative splicing databases: from catalogue to detailed analysis of regulation of expression and function of human alternative splicing variants, BMC Bioinformatics, vol.8, issue.1, pp.180-190, 2007.
DOI : 10.1186/1471-2105-8-180

P. De-la-grange, M. Dutertre, N. Martin, and D. Auboeuf, FAST DB: a website resource for the study of the expression regulation of human gene products, Nucleic Acids Research, vol.33, issue.13, pp.4276-84, 2005.
DOI : 10.1093/nar/gki738

A. Efimov, A. Kharitonov, N. Efimova, J. Loncarek, P. Miller et al., Asymmetric CLASP-Dependent Nucleation of Noncentrosomal Microtubules at the trans-Golgi Network, Developmental Cell, vol.12, issue.6, pp.917-947, 2007.
DOI : 10.1016/j.devcel.2007.04.002

A. Ellinger and M. Pavelka, Colchicine-induced tubular, vesicular and cisternal organelle aggregates in absorptive cells of the small intestine of the rat. I. Morphology and phosphatase cytochemistry, Biology of the Cell, vol.52, issue.1, pp.43-52, 1984.
DOI : 10.1111/j.1768-322X.1985.tb00323.x

J. Fan, Z. Hu, L. Zeng, W. Lu, X. Tang et al., Golgi apparatus and neurodegenerative diseases, International Journal of Developmental Neuroscience, vol.26, issue.6, pp.523-557, 2008.
DOI : 10.1016/j.ijdevneu.2008.05.006

P. Fanara, J. Banerjee, R. Hueck, M. Harper, M. Awada et al., Stabilization of Hyperdynamic Microtubules Is Neuroprotective in Amyotrophic Lateral Sclerosis, Journal of Biological Chemistry, vol.282, issue.32, pp.23465-72, 2007.
DOI : 10.1074/jbc.M703434200

T. Farrah, E. Deutsch, G. Omenn, D. Campbell, Z. Sun et al., A High-Confidence Human Plasma Proteome Reference Set with Estimated Concentrations in PeptideAtlas, Molecular & Cellular Proteomics, vol.10, issue.9, 2011.
DOI : 10.1074/mcp.M110.006353

L. Ferraiuolo, P. Heath, H. Holden, P. Kasher, J. Kirby et al., Microarray Analysis of the Cellular Pathways Involved in the Adaptation to and Progression of Motor Neuron Injury in the SOD1 G93A Mouse Model of Familial ALS, Journal of Neuroscience, vol.27, issue.34
DOI : 10.1523/JNEUROSCI.1470-07.2007

Y. Fujita, K. Okamoto, A. Sakurai, M. Amari, Y. Nakazato et al., Fragmentation of the Golgi apparatus of Betz cells in patients with amyotrophic lateral sclerosis, Journal of the Neurological Sciences, vol.163, issue.1, pp.81-86, 1999.
DOI : 10.1016/S0022-510X(99)00014-3

Y. Fujita, K. Okamoto, A. Sakurai, N. Gonatas, and A. Hirano, Fragmentation of the Golgi apparatus of the anterior horn cells in patients with familial amyotrophic lateral sclerosis with SOD1 mutations and posterior column involvement, Journal of the Neurological Sciences, vol.174, issue.2, pp.137-177, 2000.
DOI : 10.1016/S0022-510X(00)00265-3

N. Gonatas, A. Stieber, Z. Mourelatos, Y. Chen, J. Gonatas et al., Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis, Am J Pathol, vol.140, pp.731-738, 1992.

G. Haase and C. Rabouille, Golgi Fragmentation in ALS Motor Neurons. New Mechanisms Targeting Microtubules, Tethers, and Transport Vesicles, Frontiers in Neuroscience, vol.110, issue.283, 2015.
DOI : 10.1073/pnas.1315438110

M. Hafezparast, R. Klocke, C. Ruhrberg, A. Marquardt, A. Ahmad-annuar et al., Mutations in Dynein Link Motor Neuron Degeneration to Defects in Retrograde Transport, Science, vol.300, issue.5620, pp.808-820, 2003.
DOI : 10.1126/science.1083129

T. Iwata, K. Namikawa, M. Honma, N. Mori, S. Yachiku et al., Increased expression of mRNAs for microtubule disassembly molecules during nerve regeneration, Molecular Brain Research, vol.102, issue.1-2, pp.105-114, 2002.
DOI : 10.1016/S0169-328X(02)00187-0

R. Jahn and R. Scheller, SNAREs ??? engines for membrane fusion, Nature Reviews Molecular Cell Biology, vol.12, issue.9, pp.631-674, 2006.
DOI : 10.1038/362318a0

URL : http://hdl.handle.net/11858/00-001M-0000-0012-E3F3-B

T. Kleele, P. Marinkovic, P. Williams, S. Stern, E. Weigand et al., An assay to image neuronal microtubule dynamics in mice, Nature Communications, vol.14, pp.4827-4837, 2014.
DOI : 10.1016/j.media.2012.01.002

C. Lobsiger, S. Boillee, and D. Cleveland, Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons, Proceedings of the National Academy of Sciences, vol.104, issue.18, pp.7319-7345, 2007.
DOI : 10.1073/pnas.0702230104

J. Malsam and T. Sollner, Organization of SNAREs within the Golgi Stack, Cold Spring Harbor Perspectives in Biology, vol.3, issue.10, 2011.
DOI : 10.1101/cshperspect.a005249

B. Marsh, D. Mastronarde, K. Buttle, K. Howell, and J. Mcintosh, Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography, Proceedings of the National Academy of Sciences, vol.98, issue.5, pp.2399-406, 2001.
DOI : 10.1073/pnas.051631998

H. Maruyama, H. Morino, H. Ito, Y. Izumi, H. Kato et al., Mutations of optineurin in amyotrophic lateral sclerosis, Nature, vol.111, issue.7295, pp.223-229, 2010.
DOI : 10.1016/j.cub.2006.10.024

M. Mason, A. Lieberman, G. Grenningloh, and P. Anderson, Transcriptional Upregulation of SCG10 and CAP-23 Is Correlated with Regeneration of the Axons of Peripheral and Central Neurons in Vivo, Molecular and Cellular Neuroscience, vol.20, issue.4, pp.595-615, 2002.
DOI : 10.1006/mcne.2002.1140

J. Maximino, G. De-oliveira, C. Alves, and G. Chadi, Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1(G93A) Amyotrophic Lateral Sclerosis mouse model, Front Cell Neurosci, vol.8, 2014.

P. Miller, A. Folkmann, A. Maia, N. Efimova, A. Efimov et al., Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells, Nature Cell Biology, vol.112, issue.9, pp.1069-80, 1920.
DOI : 10.1242/dev.00989

K. Morrison and P. Hergenrother, Whole cell microtubule analysis by flow cytometry, Analytical Biochemistry, vol.420, issue.1, pp.26-32, 2012.
DOI : 10.1016/j.ab.2011.08.020

Z. Mourelatos, N. Gonatas, A. Stieber, M. Gurney, D. Canto et al., The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu,Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease., Proceedings of the National Academy of Sciences, vol.93, issue.11, pp.5472-5479, 1996.
DOI : 10.1073/pnas.93.11.5472

S. Munro, The Golgin Coiled-Coil Proteins of the Golgi Apparatus, Cold Spring Harbor Perspectives in Biology, vol.3, issue.6, 2011.
DOI : 10.1101/cshperspect.a005256

N. Nakamura, M. Lowe, T. Levine, C. Rabouille, and G. Warren, The Vesicle Docking Protein p115 Binds GM130, a cis-Golgi Matrix Protein, in a Mitotically Regulated Manner, Cell, vol.89, issue.3, pp.445-55, 1997.
DOI : 10.1016/S0092-8674(00)80225-1

V. Nanjappa, J. Thomas, A. Marimuthu, B. Muthusamy, A. Radhakrishnan et al., Plasma Proteome Database as a resource for proteomics research: 2014 update, Nucleic Acids Research, vol.42, issue.D1, pp.959-965, 2014.
DOI : 10.1093/nar/gkt1251

G. Nardo, R. Iennaco, N. Fusi, P. Heath, M. Marino et al., Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis, Brain, vol.136, issue.11, pp.3305-3337, 2013.
DOI : 10.1093/brain/awt250

M. Otto, R. Bowser, M. Turner, J. Berry, J. Brettschneider et al., Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS, Amyotrophic Lateral Sclerosis, vol.47, issue.1, pp.1-10, 2012.
DOI : 10.1586/14737159.7.5.647

F. Perrin, G. Boisset, M. Docquier, O. Schaad, P. Descombes et al., No widespread induction of cell death genes occurs in pure motoneurons in an amyotrophic lateral sclerosis mouse model, Human Molecular Genetics, vol.14, issue.21, pp.3309-3329, 2005.
DOI : 10.1093/hmg/ddi357

V. Popoff, F. Adolf, B. Brugger, and F. Wieland, COPI Budding within the Golgi Stack, Cold Spring Harbor Perspectives in Biology, vol.3, issue.11, 2011.
DOI : 10.1101/cshperspect.a005231

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220356

C. Raoul, A. Estevez, H. Nishimune, D. Cleveland, O. Henderson et al., Motoneuron Death Triggered by a Specific Pathway Downstream of Fas, Neuron, vol.35, issue.6, pp.1067-83, 2002.
DOI : 10.1016/S0896-6273(02)00905-4

J. Reiling, A. Olive, S. Sanyal, J. Carette, T. Brummelkamp et al., A CREB3???ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens, Nature Cell Biology, vol.48, issue.12, pp.1473-85, 2013.
DOI : 10.1371/journal.ppat.1001346

S. Rivero, J. Cardenas, M. Bornens, and R. Rios, Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130, The EMBO Journal, vol.11, issue.8, pp.1016-1044, 2009.
DOI : 10.1128/JVI.77.16.8957-8951.2003

A. Rogalski and S. Singer, Associations of elements of the Golgi apparatus with microtubules, The Journal of Cell Biology, vol.99, issue.3, pp.1092-100, 1984.
DOI : 10.1083/jcb.99.3.1092

M. Schaefer, H. Schmalbruch, E. Buhler, C. Lopez, N. Martin et al., Progressive Motor Neuronopathy: A Critical Role of the Tubulin Chaperone TBCE in Axonal Tubulin Routing from the Golgi Apparatus, Journal of Neuroscience, vol.27, issue.33, pp.8779-89, 2007.
DOI : 10.1523/JNEUROSCI.1599-07.2007

URL : https://hal.archives-ouvertes.fr/inserm-00195963

J. Shin, S. Geisler, and A. Diantonio, Dynamic regulation of SCG10 in regenerating axons after injury, Experimental Neurology, vol.252, pp.1-11, 2014.
DOI : 10.1016/j.expneurol.2013.11.007

D. Skoufias, T. Burgess, and L. Wilson, Spatial and temporal colocalization of the Golgi apparatus and microtubules rich in detyrosinated tubulin, The Journal of Cell Biology, vol.111, issue.5, pp.1929-1966, 1990.
DOI : 10.1083/jcb.111.5.1929

B. Smith, N. Ticozzi, C. Fallini, A. Gkazi, S. Topp et al., Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS, Neuron, vol.84, issue.2, pp.324-355, 2014.
DOI : 10.1016/j.neuron.2014.09.027

URL : http://doi.org/10.1016/j.neuron.2014.09.027

K. Soo, M. Halloran, V. Sundaramoorthy, S. Parakh, R. Toth et al., Rab1-dependent ER???Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS, Acta Neuropathologica, vol.282, issue.Suppl 1, pp.679-97, 2015.
DOI : 10.1007/s00401-015-1468-2

A. Stieber, Y. Chen, S. Wei, Z. Mourelatos, J. Gonatas et al., The fragmented neuronal Golgi apparatus in amyotrophic lateral sclerosis includes the trans-Golgi-network: functional implications, Acta Neuropathologica, vol.95, issue.3, pp.245-53, 1998.
DOI : 10.1007/s004010050794

A. Stieber, J. Gonatas, J. Moore, A. Bantly, H. Yim et al., Disruption of the structure of the Golgi apparatus and the function of the secretory pathway by mutants G93A and G85R of Cu, Zn superoxide dismutase (SOD1) of familial amyotrophic lateral sclerosis, Journal of the Neurological Sciences, vol.219, issue.1-2, pp.45-53, 2004.
DOI : 10.1016/j.jns.2003.12.004

C. Strey, D. Spellman, A. Stieber, J. Gonatas, X. Wang et al., Dysregulation of Stathmin, a Microtubule-Destabilizing Protein, and Up-Regulation of Hsp25, Hsp27, and the Antioxidant Peroxiredoxin 6 in a Mouse Model of Familial Amyotrophic Lateral Sclerosis, The American Journal of Pathology, vol.165, issue.5, pp.1701-1719, 2004.
DOI : 10.1016/S0002-9440(10)63426-8

V. Subramaniam, F. Peter, R. Philp, S. Wong, and W. Hong, GS28, a 28-Kilodalton Golgi SNARE That Participates in ER-Golgi Transport, Science, vol.272, issue.5265, pp.1161-1164, 1996.
DOI : 10.1126/science.272.5265.1161

V. Sundaramoorthy, J. Sultana, and J. Atkin, Golgi fragmentation in amyotrophic lateral sclerosis, an overview of possible triggers and consequences, Frontiers in Neuroscience, vol.11, issue.283, 2015.
DOI : 10.1111/j.1600-0854.2010.01086.x

V. Sundaramoorthy, A. Walker, J. Yerbury, K. Soo, M. Farg et al., Extracellular wildtype and mutant SOD1 induces ER???Golgi pathology characteristic of amyotrophic lateral sclerosis in neuronal cells, Cellular and Molecular Life Sciences, vol.99, issue.26, pp.4181-95, 2013.
DOI : 10.1007/s00018-013-1385-2

M. Taniguchi, S. Nadanaka, S. Tanakura, S. Sawaguchi, S. Midori et al., TFE3 Is a bHLH-ZIP-type Transcription Factor that Regulates the Mammalian Golgi Stress Response, Cell Structure and Function, vol.40, issue.1, pp.13-30, 2015.
DOI : 10.1247/csf.14015

J. Thyberg and S. Moskalewski, Relationship between the Golgi complex and microtubules enriched in detyrosinated or acetylated ?-tubulin: studies on cells recovering from nocodazole and cells in the terminal phase of cytokinesis, Cell & Tissue Research, vol.126, issue.3, pp.457-66, 1993.
DOI : 10.1007/BF00333700

J. Turner and A. Tartakoff, The response of the Golgi complex to microtubule alterations: the roles of metabolic energy and membrane traffic in Golgi complex organization, The Journal of Cell Biology, vol.109, issue.5, pp.2081-2089, 1989.
DOI : 10.1083/jcb.109.5.2081

M. Turner, M. Kiernan, P. Leigh, and K. Talbot, Biomarkers in amyotrophic lateral sclerosis, The Lancet Neurology, vol.8, issue.1, pp.94-109, 2009.
DOI : 10.1016/S1474-4422(08)70293-X

M. Urushitani, S. Ezzi, A. Matsuo, I. Tooyama, and J. Julien, The endoplasmic reticulum-Golgi pathway is a target for translocation and aggregation of mutant superoxide dismutase linked to ALS, The FASEB Journal, vol.22, issue.7, pp.1-12, 2008.
DOI : 10.1096/fj.07-092783

M. Urushitani, A. Sik, T. Sakurai, N. Nukina, R. Takahashi et al., Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis, Nature Neuroscience, vol.274, issue.1, pp.108-126, 2006.
DOI : 10.1038/nn1603

V. Van-dis, M. Kuijpers, E. Haasdijk, E. Teuling, S. Oakes et al., Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons, Acta Neuropathologica Communications, vol.187, issue.1, pp.38-48, 2014.
DOI : 10.1083/jcb.200908164

A. Vlug, E. Teuling, E. Haasdijk, P. French, C. Hoogenraad et al., ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation, European Journal of Neuroscience, vol.19, issue.8
DOI : 10.1111/j.1460-9568.2005.04389.x

J. Wei, Z. Zhang, R. Wynn, and J. Seemann, GM130 Regulates Golgi-Derived Spindle Assembly by Activating TPX2 and Capturing Microtubules, Cell, vol.162, issue.2, pp.287-99, 2015.
DOI : 10.1016/j.cell.2015.06.014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506739

H. Wen, Y. Lin, C. Ting, S. Lin-chao, H. Li et al., Stathmin, a microtubule-destabilizing protein, is dysregulated in spinal muscular atrophy, Human Molecular Genetics, vol.19, issue.9, pp.1766-78, 2010.
DOI : 10.1093/hmg/ddq058

H. Wen, C. Ting, H. Liu, H. Li, and S. Lin-chao, Decreased stathmin expression ameliorates neuromuscular defects but fails to prolong survival in a mouse model of spinal muscular atrophy, Neurobiology of Disease, vol.52, pp.94-103, 2013.
DOI : 10.1016/j.nbd.2012.11.015

T. Williamson and D. Cleveland, Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons, Nat Neurosci, vol.2, pp.50-56, 1999.

Y. Xu, S. Wong, T. Zhang, V. Subramaniam, and W. Hong, GS15, a 15-Kilodalton Golgi SolubleN-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (SNARE) Homologous to rbet1, Journal of Biological Chemistry, vol.272, issue.32, pp.20162-20168, 1997.
DOI : 10.1074/jbc.272.32.20162