
HAL Id: hal-01464301
https://amu.hal.science/hal-01464301

Submitted on 10 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Metadata in a Neurophysiology Laboratory
Lyuba Zehl, Florent Jaillet, Adrian Stoewer, Jan Grewe, Andrey Sobolev,

Thomas Wachtler, Thomas G Brochier, Alexa Riehle, Michael Denker, Sonja
Grün

To cite this version:
Lyuba Zehl, Florent Jaillet, Adrian Stoewer, Jan Grewe, Andrey Sobolev, et al.. Handling Meta-
data in a Neurophysiology Laboratory. Frontiers in Neuroinformatics, 2016, 10, pp.26. �10.3389/fn-
inf.2016.00026�. �hal-01464301�

https://amu.hal.science/hal-01464301
https://hal.archives-ouvertes.fr

METHODS
published: 19 July 2016

doi: 10.3389/fninf.2016.00026

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2016 | Volume 10 | Article 26

Edited by:

Qingming Luo,

Huazhong University of Science and

Technology-Wuhan National

Laboratory for Optoelectronics, China

Reviewed by:

Gully A. Burns,

USC Information Sciences Institute,

USA

Werner Van Geit,

École Polytechnique Fédérale de

Lausanne, Switzerland

*Correspondence:

Lyuba Zehl

l.zehl@fz-juelich.de

Received: 23 March 2016

Accepted: 27 June 2016

Published: 19 July 2016

Citation:

Zehl L, Jaillet F, Stoewer A, Grewe J,

Sobolev A, Wachtler T, Brochier TG,

Riehle A, Denker M and Grün S (2016)

Handling Metadata in a

Neurophysiology Laboratory.

Front. Neuroinform. 10:26.

doi: 10.3389/fninf.2016.00026

Handling Metadata in a
Neurophysiology Laboratory

Lyuba Zehl 1*, Florent Jaillet 2, 3, Adrian Stoewer 4, Jan Grewe 5, Andrey Sobolev 4,

Thomas Wachtler 4, Thomas G. Brochier 3, Alexa Riehle 3, 6, Michael Denker 1 and

Sonja Grün 1, 7

1 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN Institute I, Jülich

Research Centre, Jülich, Germany, 2 Laboratoire d’informatique Fondamentale, UMR 7279, Centre National de la Recherche

Scientifique, Aix-Marseille Université, Marseille, France, 3 Institut de Neurosciences de la Timone, UMR 7289, Centre National

de la Recherche Scientifique, Aix-Marseille Université, Marseille, France, 4Department of Biology II,

Ludwig-Maximilians-Universität München, Martinsried, Germany, 5 Institut for Neurobiology, Abteilung Neuroethologie,

Eberhard-Karls-Universität Tübingen, Tübingen, Germany, 6 Institute of Neuroscience and Medicine (INM-6), Jülich Research

Centre, Jülich, Germany, 7 Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany

To date, non-reproducibility of neurophysiological research is a matter of intense

discussion in the scientific community. A crucial component to enhance reproducibility

is to comprehensively collect and store metadata, that is, all information about the

experiment, the data, and the applied preprocessing steps on the data, such that they

can be accessed and shared in a consistent and simple manner. However, the complexity

of experiments, the highly specialized analysis workflows and a lack of knowledge

on how to make use of supporting software tools often overburden researchers to

perform such a detailed documentation. For this reason, the collected metadata are

often incomplete, incomprehensible for outsiders or ambiguous. Based on our research

experience in dealing with diverse datasets, we here provide conceptual and technical

guidance to overcome the challenges associated with the collection, organization, and

storage of metadata in a neurophysiology laboratory. Through the concrete example of

managing the metadata of a complex experiment that yields multi-channel recordings

from monkeys performing a behavioral motor task, we practically demonstrate the

implementation of these approaches and solutions with the intention that they may be

generalized to other projects. Moreover, we detail five use cases that demonstrate the

resulting benefits of constructing a well-organized metadata collection when processing

or analyzing the recorded data, in particular when these are shared between laboratories

in a modern scientific collaboration. Finally, we suggest an adaptable workflow to

accumulate, structure and store metadata from different sources using, by way of

example, the odML metadata framework.

Keywords: metadata management, reproducibility, analysis workflow, electrophysiology, data sharing, odML

1. INTRODUCTION

Technological advances in neuroscience during the last decades have led to methods that nowadays
enable to simultaneously record the activity from tens to hundreds of neurons simultaneously, in
vitro or in vivo, using a variety of techniques (Nicolelis and Ribeiro, 2002; Verkhratsky et al., 2006;
Obien et al., 2014) in combination with sophisticated stimulation methods, such as optogenetics

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://dx.doi.org/10.3389/fninf.2016.00026
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2016.00026&domain=pdf&date_stamp=2016-07-19
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:l.zehl@fz-juelich.de
http://dx.doi.org/10.3389/fninf.2016.00026
http://journal.frontiersin.org/article/10.3389/fninf.2016.00026/abstract
http://loop.frontiersin.org/people/149880/overview
http://loop.frontiersin.org/people/123824/overview
http://loop.frontiersin.org/people/88534/overview
http://loop.frontiersin.org/people/13464/overview
http://loop.frontiersin.org/people/18588/overview
http://loop.frontiersin.org/people/13465/overview
http://loop.frontiersin.org/people/41176/overview
http://loop.frontiersin.org/people/39018/overview
http://loop.frontiersin.org/people/39100/overview
http://loop.frontiersin.org/people/8155/overview

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

(Deisseroth and Schnitzer, 2013; Miyamoto and Murayama,
2015). In addition, recordings can be performed in parallel from
multiple brain areas, together with behavioral measures such as
eye or limb movements (Maldonado et al., 2008; Vargas-Irwin
et al., 2010). Such recordings enable to study network interactions
and cross-area coupling and to relate neuronal processing to
the behavioral performance of the subject (Berenyi et al., 2013;
Lewis et al., 2015; Lisman, 2015). These approaches lead to
increasingly complex experimental designs that are difficult to
parameterize, e.g., due to multidimensional characterization of
natural stimuli (Geisler, 2008) or high dimensional movement
parameters for almost freely behaving subjects (Schwarz et al.,
2014). It is a serious challenge for researchers to keep track
of the overwhelming amount of metadata generated at each
experimental step and to precisely extract all the information
relevant for data analysis and interpretation of results. Various
aspects such as the parametrization of the experimental task,
filter settings and sampling rates of the setup, the quality of
the recorded data, broken electrodes, preprocessing steps (e.g.,
spike sorting) or the condition of the subject need to be
considered. Nevertheless, the organization of these metadata is
of utmost importance for conducting research in a reproducible
manner, i.e., the ability to faithfully reproduce the experimental
procedures and subsequent analysis steps (Laine, 2007; Peng,
2011; Tomasello and Call, 2011). Moreover, detailed knowledge
of the complete recording and analysis processes is crucial for the
correct interpretation of results, and is a minimal requirement to
enable researchers to verify published results and build their own
research on the previous findings.

To achieve reproducibility, experimenters have typically
developed their own lab procedures and practices for performing
experiments and their documentation. Within the lab, crucial
information about the experiment is often transmitted by
personal communication, through handwritten laboratory
notebooks or implicitly by trained experimental procedures.
However, at latest when it comes to data sharing across
labs, essential information is often missed in the exchange
(Hines et al., 2014; Open Science Collaboration, 2015).
Moreover, if collaborating groups have different scientific
backgrounds, for example experimenters and theoreticians,
implicit domain-specific knowledge is often not communicated
or is communicated in an ambiguous fashion that leads to
misunderstandings. To avoid such scenarios, the general
principle should be to keep as much information about
an experiment as possible from the beginning on, even if
information seems to be trivial or irrelevant at the time.
Furthermore, one should annotate the data with these metadata
in a clear and concise fashion.

In order to providemetadata in an organized, easily accessible,
but also machine-readable way, Grewe et al. (2011) introduced
odML (open metadata Markup Language) as a simple file format
in analogy to SBML in systems biology (Hucka et al., 2003), or
NeuroML in neuroscientific simulation studies (Gleeson et al.,
2010; Crook et al., 2012). However, lacking to date is a detailed
investigation on how to incorporate metadata management in
the daily lab routine in terms of (i) organizing the metadata
in a comprehensive collection, (ii) practically gathering and

entering the metadata, and (iii) profiting from the resulting
comprehensive metadata collection in the process of analyzing
the data. Here, we address these points, both, conceptually, and
practically in the context of a complex behavioral experiment that
involves neuronal recordings from a large number of electrodes
that yield massively parallel spike and local field potential (LFP)
data (Riehle et al., 2013). To illustrate how to organize a
comprehensive metadata collection (i), we introduce in Section
2 the concept of metadata, and demonstrate the rich diversity of
metadata that arise in the context of the example experiment. To
demonstrate why the effort of creating a comprehensivemetadata
collection is time well spent, we describe in Section 3 five use
cases that summarize where the access to metadata becomes
relevant when working with the data (iii). Section 4 provides
detailed guidelines and assistance on how to create, structure and
hierarchically organize comprehensive metadata collections (i
and ii). Complementing these guidelines, we provide a thorough
practical introduction on how to embed a metadata management
tool, such as the odML library, into the experimental and analysis
workflow in the Supplementary Material. Finally, in Section 5 we
critically contrast the importance of proper metadata handling
against its difficulties, and derive future challenges.

2. ORGANIZING METADATA IN
NEUROPHYSIOLOGY

Metadata are generally defined as data describing data (Baca,
2008; Merriam-Webster, 2016). More specifically, metadata
are information that describe the conditions under which a
certain dataset has been recorded (Grewe et al., 2011). Ideally
all metadata would be available machine-readable at a single
location that is linked to the corresponding recorded dataset.
The fact that such central, comprehensive metadata collections
are not common practice already today is by no means a sign
of negligence on the part of the scientists, but is explained
by the fact that in the absence of conceptual guidelines and
software support, such a situation is extremely difficult to achieve
given the high complexity of the task. Already the fact that an
electrophysiological setup is composed of several hardware and
software components, often from different vendors, imposes the
need to handle multiple files of different formats. Some files
may even contain metadata that are not machine-readable and
-interpretable. Furthermore, performing an experiment requires
the full attention of the experimenters which limits the amount
of metadata that can be manually captured online. Metadata that
arise unexpectedly during an experiment, e.g., the cause of a
sudden noise artifact, are commonly documented as handwritten
notes in the laboratory notebook. In fact, handwritten notes are
often unavoidable, because legal regulations of some countries,
e.g., France1, require the documentation of experiments in the
form of a handwritten laboratory notebook.

To present the concept of metadata management in a
practical context, we introduce in the following a selected
electrophysiological experiment. For clarity, a graphical
summary of the behavioral task and the recording setup is

1http://www.cnrs.fr/infoslabos/cahier-laboratoire/docs/cahierlabo.pdf

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2016 | Volume 10 | Article 26

http://www.cnrs.fr/infoslabos/cahier-laboratoire/docs/cahierlabo.pdf
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

provided in Figure 1, and a list of task-related abbreviations
(e.g., behavioral conditions and events) is listed in Table 1. First
described in Riehle et al. (2013) and Milekovic et al. (2015), the
experiment employs high density multi-electrode recordings
to study the modulation of spiking and LFP activities in the
motor/pre-motor cortex of monkeys performing an instructed
delayed reach-to-grasp task. In total, three monkeys (Macaca
mulatta; 2 females, L, T; 1 male, N) were trained to grasp an
object using one of two different grip types (side grip, SG, or
precision grip, PG) and to pull it against one of two possible
loads requiring either a high (HF) or low (LF) pulling force (cf.

Figure 1). In each trial, instructions for the requested behavior
were provided to the monkeys through two consecutive visual
cues (C and GO) which were separated by a one second delay
and generated by the illumination of specific combinations of 5
LEDs positioned above the object (cf. Figure 1). The complexity
of this study makes it particularly suitable to expose the difficulty
of collecting, organizing and storing metadata. Moreover,
metadata were first organized according to the laboratory
internal procedures and practices for documentation, while the
organization of the metadata into a comprehensive machine-
readable format was done a-posteriori, after the experiment

FIGURE 1 | Overview of the reach-to-grasp setup. Bottom: Time line of the experiment indicating the sequence of presented stimuli (WS, C-ON, C-OFF, GO,

RW), the behavioral epochs (SP, WP, C, DP, RT, MT, PT, MP) and registered behavioral events (TS, SR, OT, HS). Fixed durations of behavioral epochs are specified in

the time line. The abbreviations used in the trial scheme are explained in Table 1. The sketch of the experimental setup above illustrates the involved hard and

software components (boxes) as well as the signal flow. The signal flow is composed of two streams of signals: Recording and processing of the neuronal signals

(yellow arrows) and the signals related behavior (green and blue arrows). The controller of each component is indicated by black arrows. The gray boxes indicate files

that contain metadata generated or updated at this stage (cf. numbers in boxes to labels in Table 2 for details). The signal flow of the neuronal data starts at the level

of the Utah array, continues with the headstage, the Front-End Amplifier, the Neural Signal Processor (NSP), and ends with saving the data as three Blackrock specific

data file formats (.nev, .ns2 and .ns5/.ns6) using Central Suite running on the data acquisition PC. The stream of behavioral signals is split into two parallel pathways.

One of them contains the analog signals (force and displacement sensors), colored in blue, and the other one the digital signals (LEDs, table switch, and reward

control), colored in green. The correct sequence of trial events (presentation of stimuli), the setting of the load force of the object and the performed behavior (timing,

movement) are monitored (blue and green arrows) and controlled (black arrows) online via LabVIEW on a second setup control PC. The digitization of the signals is

performed via an Analog-Digital converter (ADC) of National Instruments (NI) which is upstream to the setup control PC. The ADC is also upstream to NSP which is

used to save all digital or digitized signals into the nev data file via Central Suite. In parallel the analog signals of the load and displacement sensors of the object are

fed directly into the NSP and saved into the .ns2 file. Consecutive preprocessing of the neuronal as well as the behavioral signals (flow of preprocessed signals

marked by dashed lines) is performed offline on separate PCs, such as the spike sorting with the Plexon offline Spike Sorter or other preprocessing steps with custom

programs (e.g., “Quality Check” or “Event Detection”). Image of Utah array courtesy of Blackrock Microsystems.

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

TABLE 1 | Trial scheme parameters of the reach-to-grasp experiment.

Abbreviation Written-out Definition

REQUESTED BEHAVIOR (GRIP AND FORCE TYPES)

SG Side grip Indicated by the illumination of the two right outer red LEDs

PG Precision grip Indicated by the illumination of the two left outer red LEDs

LF Low force Pull force needed for low object load, indicated by the illumination of the two bottom outer red LEDs

HF High force Pull force needed for high object load, indicated by the illumination of the two upper outer red LEDs

TRIAL EVENTS

TS Trial start Time point where monkey self-initiates a trial by pressing a table switch

WS Warning signal Time point where the central yellow LED of the visual cue system is illuminated to focus the monkey’s attention toward the

upcoming cues

C-ON Cue-on Time point of first cue where two of four red outer LEDs of the visual cue system are illuminated indicating the grip or force type

C-OFF Cue-off Time point where first cue is turned off

GO Go signal Time point of second cue where two of four red outer LEDs of the visual cue system are illuminated indicating the missing

behavioral type

SR Switch release Time point where table switch is released by the monkey indicating movement onset

OT Object touch Time point where object is touched by the monkey measured by the force and displacement sensors of the object

HS Hold start Time point where monkey reached holding position of the object

RW Reward Time point where monkey receives the trial reward

OR Object release Time point where monkey releases the object and returns its hand to the table switch for the next TS

TRIAL PERIODS

SP Start period Period between TS and WS (400 ms)

WP Waiting period Period between WS and C-ON (400 ms)

C Cue period Period between C-ON and C-OFF (300 ms)

DP Delay period Period between C-OFF and GO (1000 ms)

RT Reaction time Period between GO and SR

MT Movement time Period between SR and OT

PT Pull time Period between OT and HS

HP Hold period Period between HS and RW (500 ms)

The list is organized in trial scheme parameters defining the requested behavior, trial scheme parameters defining the trial events, and trial scheme parameters defining the trial periods.
The list provides the abbreviations for each trial scheme parameter used in Figure 1 and a short definition of the parameter.

was completed. To work with the data and metadata of this
experiment one has to handle on average 300 recording sessions
per monkey, with data distributed over 3 files per session, and
metadata distributed over 5 files per implant, at least 10 files per
recording and one file for general information of the experiment
(cf. Table 2). This situation imposed an additional complexity to
reorganize the various metadata sources.

To give a more concrete impression of the painstaking detail
that needs to be considered while planning and organizing a
comprehensive metadata collection, we provide an exhaustive
description of the experiment in the Supplementary Material.

To illustrate the level of complexity of metadata management
in this example, Figure 1 outlines the different components of
the experimental setup, the signal flow, the task and the trial

scheme. In addition, the heterogeneous pieces of metadata and
the corresponding files that contain them in the absence of a
comprehensive metadata collection are listed and described in

Table 2. Here, all metadata source files are labeled by numbers
and appear in Figure 1 wherever they were generated. If labels
appear multiple times, they were iteratively enriched with
information obtained from the corresponding components of

the setup.

In such a complex experiment, the relevance of somemetadata
does not become immediately apparent and is sometimes
underestimated. For example, the immediate relevance of each
minute detail of the experimental setup are of little interest
for the interpretation of a single recording, and only when
one attempts to rebuild the experiment, these metadata become
valuable. Apart from that, any piece of metadata can become
highly relevant for screening and selecting datasets according to
specific criteria at a later stage. Different experiments produce
different sets of metadata and it is therefore not possible to
provide a detailed list of metadata that needs to be collected from
any given type of experiment. Nevertheless, the general principle
should be to keep as much information about an experiment
as possible from the beginning on, even if information seems
to be trivial or irrelevant at the time. Based on our experience
gathered from various collaborations, we compiled a list of
guiding questions to help scientists defining their optimal
collection of metadata for their use scenario, e.g., reproducing
the experiment and/or the analysis of the data, or sharing
the data:

• What metadata would be required to replicate the experiment
elsewhere?

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

TABLE 2 | Metadata sources of the reach-to-gasp experiment.

Label File Format Software Generation Content # Files

METADATA FILES WHICH ARE GENERATED BEFORE THE RECORDING PERIOD STARTS

0 Project specific info file xls Excel Manually General information on the experiment 1/exp.

1 Subject/array specific info file xls Excel Manually Information on the monkey (profile,

surgery, training)

1/monkey

or 1/array

2 Electrode configuration file txt Text editor Manually Information on the electrodes of the Utah

array

1/array

3 Electrode configuration file txt Text editor Manually Information on the anatomical placement

of the array

1/array

4 Blackrock configuration file xls Excel Manually Information on the Blackrock hard- and

software properties

1/array

METADATA FILES WHICH ARE GENERATED DURING THE RECORDING PERIOD

5 Neural event file nev Central suite Automatically Information on the Blackrock hard- and

software settings (Incl. spike waveforms

and event times)

1/rec.

6a Neural signal file ns5/6 Central suite Automatically Continuous neuronal signals in high

resolution

1/rec.

6b Neural signal file ns2 Central suite Automatically Continuous LFP signals, and analog

signals of the force and displacement

sensors of the object

1/rec.

7 Recording specific file xls Excel Manually Information on the recording 1/rec.

METADATA FILES WHICH ARE GENERATED AFTER THE RECORDING PERIOD (PREPROCESSING STEPS)

8 Neural event file nev Plexon Semi-automatically Information on the Blackrock hard- and

software settings (incl. spike waveforms,

event times, and spike sorting results)

1/rec.

9 Spike sorting results txt Text editor Manually Information on the spike sorting results 1/rec.

10 Spike sorting results mat MATLAB Semi-automatically Quality assessment of the spike sorting

results (preprocessing step)

1/rec.

11 Behavioral event file mat MATLAB Semi-automatically Detection of OT, HS and OR 1/rec.

12 Behavioral event file mat MATLAB Semi-automatically Detection of object load force 1/rec.

13 Quality assessment file hdf5 Python Semi-automatically Quality assessment of LFP signals for

different frequency bands

(1/frq-

band) per

rec.

The label of each source file is used in Figure 1 to indicate at which experimental stage metadata are generated or updated. Additionally, the table summarizes information about the
software used to generate each source file, whether the generation process was automatized, the content of each source file, and how many files were generated for each source within
the complete reach-to-grasp experiment.

• Is the experiment sufficiently explained, such that someone
else could continue the work?

• If the recordings exhibit spurious data, is the signal flow
completely reconstructable to find the cause?

• Are metadata provided which may explain variability (e.g.,
between subjects or recordings) in the recorded data?

• Are metadata provided which enable access to subsets of data
to address specific scientific questions?

• Is the recorded data described in sufficient detail, such that an
external collaborator could understand them?

For the example experiment presented in Figure 1, we
used these guiding questions to control if the content of
the various metadata sources was sufficient, and enriched
these where necessary. The process of planning the
relevant metadata content and to organize the metadata
into a comprehensive collection can be time-consuming,
especially if the process happened after the experiment was
performed.

In the following, we will outline use cases that illustrate why the
time for creating a comprehensive metadata collection is well
spent, nevertheless.

3. ADVANTAGE OF A COMPREHENSIVE
METADATA COLLECTION: USE CASES

Based on the example experiment (Figure 1), we present five
use cases that demonstrate the common scenarios in which
access to metadata becomes important. For the implementation
of each use case, we contrast the scenarios before and after having
organizing metadata in a comprehensive collection:

• Scenario 1: Metadata are organized in different files and
formats which are stored in a metadata source directory.

• Scenario 2: Metadata sources of scenario 1 are compiled into
a comprehensive collection, stored in one file per recording
using a standard file format.

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

We introduce the protagonists acting in the use cases and
characterize their relationship:

• Alice: She is the experimenter who built up the setup, trained
the monkeys and carried out the experimental study. She
has programming experience in MATLAB and performs the
preprocessing step of spike sorting.

• Bob: He is a data analyst and a new member of Alice’s
laboratory. He has programming experience in MATLAB and
Python. His task is to support Alice in implementing the
preprocessing and first analysis of the data.

• Carol: She is a theoretical neuroscientist and an analyst of an
external group that collaborates with Alice’s laboratory. She
is an experienced Python programmer. Information exchange
with Alice’s group is limited to phone, email and video calls,
and few in-person meetings. She is not an experimentalist and
therefore not used to work with real neuronal data. She never
participated in an experiment, and thus never experienced the
workflow of a typical recording session.

Each of the use cases below illustrates a different aspect of
the analysis workflow: enrichment of metadata information,
metadata accessibility, selection and screening of datasets, and
formal queries to reference metadata.

3.1. Use Case 1: Enrichment of the
Metadata Collection
A difficult aspect of metadata management is that one cannot
know all metadata in advance that are necessary to ensure the
reproducibility of the experiment and the data analysis. Thus, the
metadata collection needs to be enriched when new and updated

information becomes available (see Figure 2). An example for such
an enrichment of a metadata collection is the integration of results
and parameters of preprocessing steps applied to the recorded data,
since these are usually performed long after the primary data
acquisition (cf. Table 2). Use case 1 demonstrates the advantage of
using a standard file format when a metadata collection is enriched
with information from successive preprocessing steps.

In one of the first meetings with Alice, Bob learned that
a number of preprocessing steps are performed by Alice.
One of these is to identify and extract time points of the
behavioral events describing the object displacement in each
trial (OT, HS, OR, see Table 1) from the continuous force and
displacement signals which were saved in the ns2-datafile (label
6b in Figure 1 and Table 2). For this, the signals were loaded
by a program Alice developed in MATLAB to perform this
preprocessing step. The extracted behavioral events are saved for
each recording session along with the processing parameters in
a respective .mat file (labels 11 in Figure 1 and Table 2). It is
important that these preprocessing results are readily accessible
to all collaboration partners including Bob, because they are
needed to correctly interpret the timeline and behavior in each
trial.

In scenario 1, Alice does not create a comprehensive metadata
collection, and Bob has to deal with the fact that the behavioral
events are not only not stored along with the digitally available
trial events (e.g., TS, see Table 1) in the recorded nev-file (label 5
in Figure 1 and Table 2), but also saved in the custom-made mat-
file which requires him to write a corresponding loading routine.
In scenario 2, Alice saved the digital, directly available trial events
into one comprehensive metadata collection per recording. With
the preprocessing of each recording, she enriched then the

FIGURE 2 | Enrichment of the reach-to-grasp metadata collection over time. Small gray and labeled boxes represent files which contain metadata (cf.

Table 2). The metadata collection is first generated at the beginning of the experiment and contains only information constant for the complete experiment. With each

monkey, the metadata collection is enriched by monkey-specific information that remains constant for the time of the experiment. With each array implantation,

information about that array is included in the metadata collection. During or directly after the recording of each session the metadata collection is enriched by

information specific to the recording. Several preprocessing steps are then performed on the recorded data (here spike sorting, event detection, and quality check).

The newly generated metadata are integrated step-by-step into the metadata collection and enrich the information available for subsequent data analysis.

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

corresponding primary collection with all results and parameters
of the behavioral trial event extraction. As a result, the access to
all trial events becomes easier for Bob, so that he is able to quickly
scan the behavior in each trial.

In summary, a comprehensive metadata collection has the
advantage that it bundles metadata that conceptually belongs
together, and simplifies access by combining metadata into one
single, standard file format. Moreover, the flexible enrichment of
a comprehensive metadata collection simplifies the organization
of metadata that originate from multiple versions of performing
a preprocessing step, e.g., as in the case of offline spike sorting
(see Supplementary Material). With this, a comprehensive
metadata collection not only simplifies the reproducibility of
Alice’s work (e.g., repetition of preprocessing steps), but also
guarantees a better reproducibility for the collaboration with
Bob (e.g., standardized access to parameters and results of
preprocessing steps).

3.2. Use Case 2: Metadata Accessibility
Complex experimental studies usually include organizational
structures on the level of the file system (e.g., directories) and file
format to store all data and metadata. Even in cases where all
data are very well organized, metadata are usually distributed over
several files and formats (see Table 2). Use case 2 demonstrates
how a standard file format of a comprehensive metadata collection
improves the accessibility and readability of metadata.

When Bob first arrived in the lab, Alice explained to him the
structure of the data and metadata of the experimental study.
Unfortunately, Bob could not start working on the data directly
after the meeting with Alice. He made of course several notes
during this meeting, but due to the complexity of the information
he forgot where to find the individual pieces of metadata in
sufficient detail.

In scenario 1, Bob starts to scan all different metadata sources
to regain an overview of what can be found where. This means
that he has not only to go through several files, but also that
he needs to deal with several formats, and that he needs to
understand the different design of each file. In scenario 2, Bob
knows that all metadata are collected and stored in one file per
recording which is readable using standard software, e.g., a text
editor. To access again an overview of the available metadata, he
can open a file of any recording, screen its content or search for
specific metadata.

Thus, the metadata organization in scenario 1 has the
following disadvantages: (i) it is difficult to keep track of which
metadata source contains which piece of information; (ii) not
every metadata source is readable with a simple, easy accessible
software tool (e.g., the binary data files, .nev and .nsX; labels
5, 6a, and 6b in Figure 1 and Table 2, respectively); (iii) not
every software tool offers the option to search for a specific
metadata content. In contrast, in scenario 2, a comprehensive,
standardized and searchable organization of the metadata
guarantees a complete and easy access to all metadata related to
an experiment even over a long period of time. This simplifies the
long-term comprehensibility of Alice’s experiment not only for
herself, but also for all further group members and collaboration
partners.

3.3. Use Case 3: Selection of Datasets
Data of an experiment can usually be used to address multiple
scientific questions. In this context, it is necessary to select datasets
according to certain criteria which are defined by the requirements
and constraints of the scientific question. These criteria are usually
represented by metadata related to one recording session and
generated during or after the recording period (see Table 2). Use
case 3 demonstrates how a comprehensive metadata collection with
a standard file format supports the automatic selection of datasets
according to defined selection criteria.

Alice reported that she had the feeling that the weekend break
influences the monkey’s performance on Mondays and asked
Bob to investigate her suspicion. To solve this new task, Bob
first wants to identify the recording sessions for each weekday
(criterion 1) which were recorded with standard task settings
(criterion 2) and under the standard experimental paradigm
(instructed delayed reach-to-grasp task with two cues; criterion
3). To automatize the data selection, Bob writes a Python
program where he loops through all available recording sessions,
uses criterion 1 to identify the weekday, and adds each session
name to a corresponding list if in the session criteria 2 and 3 were
fulfilled.

To write this program, Bob uses in scenario 1 the knowledge
he gained from the manual inspection in use case 2 to identify for
the chosen selection criteria the different metadata source files.
Criterion 1 was stored in the .nev data file (label 5 in Figure 1

and Table 2) which Bob can access via the data loading routine.
Criteria 2 and 3 are instead stored in the recording-specific
spreadsheet (label 7 in Figure 1 andTable 2). To automatize their
extraction, Bob additionally needs to write a spreadsheet loading
routine, because there is no standard loading routine available
for the homemade structure of the spreadsheet. In contrast, in
scenario 2, Bob extracts all three criteria for each recording
from one comprehensive metadata file using an available loading
routine of the chosen standard file format.

In summary, compared to scenario 1, scenario 2 improved
the workflow of selecting datasets according to certain criteria
in two aspects: (i) to check for the selection criteria only one
metadata file per recording needs to be loaded, and (ii) to
extract metadata stored in a standardized format a loading
routine is already available. Thus, in scenario 2 the scripts for
automatized data selection are less complicated, which improved
the reproducibility of the operation.

3.4. Use Case 4: Metadata Screening
Sometimes it can be helpful to gain an overview of the metadata of
an entire experiment. Such a screening process is often negatively
influenced by the following aspects. (i) Some metadata are stored
along with the actual electrophysiological data. (ii) Metadata are
often distributed over several files and formats. (iii) Somemetadata
need to be computed from other metadata. All three aspects slow
down the screening procedure and complicate the corresponding
code. Use case 4 demonstrates how a comprehensive metadata
collection improves the speed and reproducibility of a metadata
screening procedure.

After generating for each weekday a corresponding list of
recording file names (see use case 3, Section 3.3), Bob would like
to generate an overview figure summarizing the set of metadata

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

that best reflect the performance of the monkey during the
selected recordings (Figure 3). This set includes the following
metadata: the RTs of the trials for each recording (Figure 3B),
the number of correct vs. error trials (Figure 3C), and the total
duration of the recording (Figure 3D). To exclude a bias due to
a variable distribution of the different task conditions, Bob also
wants to include the trial type combinations and their sequential
order (Figure 3A).

To create the overview figure in scenario 1, Bob has to load
the .nev data file (label 5 in Figure 1 and Table 2) in which
most selection criteria are stored, and additionally the .ns2 data
file (label 6b in Figure 1 and Table 2) to extract the duration
of the recording. For both files, Bob is able to use available
loading routines, but for accessing the desiredmetadata he always
has to load the complete data files. Depending on the data
size this processing can be very time consuming. In scenario 2,
Bob is able to directly efficiently extract all metadata from one
comprehensive metadata file without having to load the neuronal
data in parallel.

In summary, compared to scenario 1, the workflow of
creating an overview of certain metadata of an entire experiment
is improved in scenario 2 by reducing the number of metadata
files which need to be screened to one per recoding, and by
drastically lowering the run time to collect the criteria used in
the figure. In addition, Bob benefits from better reproducibility
as in use case 3 (Section 3.3).

3.5. Use Case 5: Metadata Queries for Data
Selection
It is common that datasets are analyzed not only by members
of the experimenter’s lab, but also collaborators. Two difficulties
may arise in this context. First, the partners will often base their
work on different workflow strategies and software technologies,
making it difficult to share their code, in particular code that is
used to access data objects. Second, the geographical separation
represents a communication barrier resulting from infrequent and
impersonal communication by telephone, chat, or email, requiring
extra care in conveying relevant information to the partner in a
precise way. Use case 5 demonstrates how a standard format used
to save the comprehensive metadata collection improves cross-lab
collaborations by formalizing the communication process through
the use of queries on the metadata.

Alice has detected a systematic noise artifact in the LFP
signals of some channels in recording sessions performed in
July (possibly due to an additional air-conditioning). As a
consequence, Alice decided to exclude recordings performed
in July from her LFP spectral analyses. Alice collaborates with
Carol to perform complementary spike correlation analyses
on an identical subset of recordings in order to find out
if the network correlation structure is affected by task
performance. To ensure that they analyze exactly the same
datasets, the best data selection solution is to rely on metadata
information that is located in the data files, rather than
error-prone measures such interpreting the file name or file
creation date.

In scenario 1, since Alice and Carol use different
programming languages (MATLAB and Python), they need
to ensure that their routines extract the same recording date.

This procedure will require to provide corresponding cross-
validations between their MATLAB and Python routines to
extract identical dates.

In scenario 2, Alice and Carol agree on a concrete
formal specification of the dataset selection (Figure 4) via the
comprehensive metadata collection. In such a specification,
metadata are stored in a defined format that reflects the structure
of key-value pairs: in our example, Alice would specify the
data selection by telling Carol to allow for only those recording
sessions where the key Month has the exact value July. For
the chosen standardized format of the collection, the metadata
query can be handled by an application program interface (API)
available both at the MATLAB and Python levels for Alice and
Carol, respectively. Therefore, the query is guaranteed to produce
the same result for both scientists. The formalization of such
metadata queries will result in a more coherent and less error-
prone synchronization between the work in the two laboratories.

4. GUIDELINES FOR CREATING A
COMPREHENSIVE METADATA
COLLECTION

The five use cases illustrate the importance and usefulness of
a comprehensive metadata collection in a standardized format.
One effort to develop such a standardized format is the odML
project, which implements a metadata model proposed by Grewe
et al. (2011). The odML project supports a software library (the
odML library) for reading, writing, and handling odML files
through an API with language support for Python, Java and
MATLAB. The remainder of this paper complements the original
technical publication of the software (Grewe et al., 2011) by
illustrating in a tutorial like style its practical use in creating a
comprehensivemetadata collection.We demonstrate this process
using the metadata of the described experiment as a practical
example. We show how to generate a comprehensive metadata
file and outline a workflow to enter and maintain metadata
in a collection of such files. Although we are convinced that
the odML library is particularly well designed to reach this
goal, the concepts and guidelines are of general applicability
and could be implemented with other suitable technology as
well.

4.1. The odML Metadata Model
Metadata can be of arbitrary type and describe various aspects
of the recording and preprocessing steps of the experiment
(cf. Figure 1 and Table 2). Nevertheless, all metadata can be
represented by a key-value pair, where the key indicates the type
of metadata, and the value contains the metadata or points to
a file or a remote location where the metadata can be obtained
(e.g., for image files). Consequently, the odML metadata model
is built on the concepts of Properties (keys) paired with Values
as the structural foundation of any metadata file. A Property
may contain one or several Values. Its name is a short identifier
by which the metadata can be addressed and its definition can
be used to give a textual description of metadata stored in
the Value(s). Properties that belong to the same context (e.g.,
description of an experimental subject) are grouped in so called

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

Monkey L

Trial type sequences of recording sessions (first 50 trials)

RTs for trial types

Number of correct and error trials

Median duration for recording sessions

A

B

C

D

FIGURE 3 | Overview of reach-to-grasp metadata summarizing the performance of monkey L on each weekday. (A) displays the order of trial sequences

of the first 50 trials (small bars along the x-axis) for each of all sessions (rows along the y-axis) recorded on the corresponding weekday. Each small bar

(Continued)

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

FIGURE 3 | Continued

corresponds to a trial and its color to the requested trial type of the trial (see color legend below subplot (A); for trial type acronyms see main text). (B) summarizes the

median reaction times (RTs) for all trials of the same trial type (see color legend) of all sessions recorded on the corresponding weekday. (C) shows for each weekday

the total number of trials of all sessions differentiating between correct and error trials (colored in black and gray) and between sessions where the monkey was first

informed about the grip type (grip first) compared to sessions where the first cue informed about the force type (force first). (D) displays for each weekday the median

recording duration of the grip first and force first sessions.

FIGURE 4 | Schematic workflow of selecting data across laboratories

based on available API for a comprehensive metadata collection. In this

optimized workflow, Alice and Carol are both able to identically select data

from the common repository by screening the comprehensive metadata

collection for the selection criteria (month == July) via the available APIs for

MATLAB and Python. Such a formalized query in data selection supports a

well-defined collaborative workflow across laboratories.

Sections which are specified by their name, type and a definition.
Sections can further be nested, i.e., contain sub-sections and
thus form a tree-like structure. At the root of the tree is the
Document which contains information about the author, the date
of the file and a version. Figure 5 illustrates how a subset of
the experimental metadata is organized in an odML file. The
design concepts presented here can be transferred to many other
software solutions for metadata handling. We chose the odML
library because it is comparatively generic and flexible, which
makes it well-suited for a broad variety of experimental scenarios,
and which enabled us to introduce it asmetadata framework in all
our collaborations. For extensive details on the odML metadata
model in addition to Grewe et al. (2011), we provide a tutorial of
the odML API as part of the odML Python library2.

4.2. Metadata Strategy: Distribution of
Information
In preparing a metadata strategy for an experiment, one has
to decide if and how information should be distributed over

2https://github.com/G-Node/python-odml

multiple files. For example, one could decide to either generate
(i) several files for each recording, (ii) a single file per recording,
or (iii) a single file that comprises a series of recordings.
The appropriate approach depends on both, the complexity of
metadata and the user’s specific needs for accessing them. In the
following, we will exemplify situations which could lead to one of
the three different approaches:

(i) If the metadata of a preprocessing step are complex,
combining themwith the metadata related to the initial data
acquisition could be confusing. One could instead generate
separate files for the preprocessing and the recording. The
downside of this approach is that the availability of both files
needs to be assured.

(ii) In an experiment where each single recording comprises
a certain behavioral condition, the amount of metadata
describing each condition is complex, and recordings
are performed independently from each other, a single
comprehensive metadata file per recording should be used.
This approach was chosen for the example experiment
described in Section 2.

(iii) If one recording is strongly related to, or even directly
influences, future recordings (e.g., learning of a certain
behavior in several training sessions), then one single
comprehensive metadata file should cover all the related
recordings. Even metadata of preprocessing steps could be
attached to this single file.

4.3. Metadata Strategy: Structuring
Information
Organizing metadata in a hierarchical structure facilitates
navigation through possibly complex and extensive metadata
files. The way to structure this hierarchy strongly depends on the
experiment, the metadata content, and the individual demands
resulting from how the metadata collection should be used.
Nevertheless, there are some general guidelines to consider
(based on Grewe et al., 2011):

(i) Keep the structure as flat as possible and as deep as
necessary. Avoid Sections without any Properties.

(ii) Try to keep the structure and content as generic as possible.
This enables the reuse of parts of the structure for other
recording situations or even different experiments. Design a
common structure for the entire experiment, or even across
related studies, so that the same set of metadata filters can be
used as queries in upcoming analyses. If this is not possible
andmultiple structures are introduced, for instance, because
of very different task designs, create a Property which
you can use to determine which structure was used in

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2016 | Volume 10 | Article 26

https://github.com/G-Node/python-odml
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

FIGURE 5 | Example of the structural design of an odML file. The displayed Sections, Properties and Values are a subset of the odML Subject branch of the

reach-to-grasp experiment (Subject_Demo.odml). Metadata are stored in the “data” attributes of odML Value objects, which also provide additional attributes to

describe the datatype (dtype), the unit or the uncertainty of the Value. Which metadata are stored in the Values is defined by the connected Property object via its

“name” and “definition” attribute. These Property-Value/s pairs that contain metadata of a similar context are grouped together into a Section object that is given a

“name” and a “definition.” If a sub-context needs to be defined in more detail, Sections can also group other Sections together containing the corresponding metadata

again in Property-Value/s pairs. To finalize the tree structure, Sections which are highest in the hierarchy are grouped together into a Document object which can state

additional information on the odML file, such as who created it (“author”), when it was created (“date”), or which code or template version was used to create it.

a particular file (e.g., Property “UsedTaskDesign”: Value
“TaskDesign_01”).

(iii) Create a structure that categorizes metadata clearly into
different branches. Make use of the general components
of an electrophysiological experiment (e.g., subject, setup,
hardware, software, etc.), but also classify metadata
according to context or time (e.g., previous knowledge, pre-
and postprocessing steps).

(iv) In order to describe repeating entities like an experimental
trial or an electrode description, it is advisable to separate
constant properties from those that change individually.
Generate one Section for constant features and unique
Sections for each repetition for metadata that may change.

In the following we will illustrate these principles with a subset
of the metadata related to our example experiment (Section 2).
Using the nomenclature of the odML metadata framework, we
structured the metadata of an Utah array into the hierarchy of
Sections which is schematically displayed in Figure 6.

The top level is called “UtahArray.” A Utah array is a silicon-
based multi-electrode array which is wired to a connector.
General metadata of the Utah array, such as the serial number
(cf. “SerialNo” in Figure 6) are directly attached as Properties to
the main Section (guideline i).

More detailed descriptions are needed for the other
components of the Utah array. The hierarchy is thus extended
with a Section for the actual electrode array and a Section for the
connector component. For both Utah array components, there
are different fabrication types available which differ only slightly

in their metadata configuration. For this reason, we named the

Sections generically “Array” and “Connector” (guideline ii) and
specified their actual fabrication type via their attached Properties

(e.g., “Style”).
The fabrication type of the “Array” is defined by the number

and configuration of electrodes. In our experiment a Utah array

with 100 electrodes (96 connected, 4 inactive) arranged on a

10 × 10 grid, supplied with wires for two references and one
ground was used. It is, however, possible to have a different
total number of electrodes and even an array split into several
grids with different electrode arrangements. Nevertheless, all
electrodes or grids can be defined via a fixed set of properties
that describe the individual setting of each electrode or grid.
To keep the structure as generic as possible, we registered,
besides the total number of electrodes references and grounds,
the number of active electrodes, and the number of grids as
Properties of the (level-2-) Section “Array” (guideline ii). Within
the “Array” Section, (level-3-) Sections named “Electrode_XXX”

Frontiers in Neuroinformatics | www.frontiersin.org 11 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

FIGURE 6 | Schematic view of the tree structure of the odML template for a Utah array. Color code of boxes matches color code of odML objects in

Figure 5. To simplify the schema, odML Properties and their values are listed in blocks for each odML section and additional attributes of the odML objects (e.g.,

definitions) are not displayed. Likewise, the remaining 94 odML Sections of the Utah Array electrodes (“Electrode_002” to “Electrode_095”) are left out and only

indicated by the dashed line. Based on the size of the odML template for a Utah array, which is only one branch of a final odML file of the reach-to-grasp study, one

can imagine the complexity of a complete reach-to-grasp odML file.

for each electrode and grid are attached, each containing the
same Properties, but with individual Values for that particular
electrode. This design makes it possible to maintain the structure
for other experiments where the number and arrangement of
electrodes and grids might be different (guidelines ii and iv).
The electrode IDs of a Utah array are numbered consecutively,
independent of the number of grids. In order not to further
increase the hierarchy depth, a Property “Grid_ID” in each
“Electrode_XXX” Section identifies to which grid the electrode
belongs to, instead of attaching the electrodes as (level-4-)
Sections to its Grid and Array parent Sections (guideline i).

The example of the Utah array demonstrates the advantage
of a meaningful naming scheme for Sections and Properties.
To prevent ambiguity, any Section and Property name at
the same level of the hierarchy must be unique. However,
a given name can be reused at different hierarchy depths.
This reuse can facilitate the readability of the structure and

make its interpretation more intuitive. The “UtahArray” Section
(Figure 6) demonstrates a situation in which ambiguous Section
and Property names are useful, and where they must be avoided.
The Sections for the individual electrodes of the array are all
on the same hierarchy level. For this reason, their names need
to be unique which is guaranteed by including the electrode
ID into the Section name (e.g., “Electrode_001”). In contrast,
the Property names of each individual electrode Section, such
as “ID,” “GridID,” etc., can be reused. Similarly, the results of
the offline spike-sorting can be stored in a (level-4-) Section
“OfflineSpikeSorting” below each electrode Section. Using the
identical name for this Section for each electrode is helpful,
because its content identifies the same type of information. In
the Supplementary Material, we show for the odML framework
hands-on how one can make use of recurring Section or Property
names to quickly extract metadata from large and complex
hierarchies.

Frontiers in Neuroinformatics | www.frontiersin.org 12 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

4.4. Metadata Strategy: Workflow
For most experiments it is unavoidable that metadata are
distributed across various files and formats (Figure 1 and
Table 2). To combine them into one or multiple file(s) of one
standard format, one not only needs to generate a meaningful
structure for organizing the metadata of the experiment,
but also to write routines that load and integrate metadata
into the corresponding file(s). For reasons of clarity and
comprehensibility we argue to separate these processes. Figure 7
illustrates and summarizes the corresponding workflow for the
example experiment using the odML library.

As a first step, it is best to write a template in order to
develop andmaintain the structure of the files of a comprehensive
metadata collection. In the odML metadata model, a template is
defined as an “empty” odML file in which the user determined
the structure and attributes of Sections and Properties to
organize the metadata, but filled it with dummy Values. To
create an odML template one can use (i) the odML Editor, a
graphical user interface that is part of the odML Python library
(see supplement), (ii) a custom-written program based on the
odML library (Figure 8), or (iii) a spread-sheet software (see
Figure 9), e.g., Excel (Microsoft Corporation). Especially for
large and complex structures, (ii) or (iii) are the more flexible
approaches to generate a template. For (iii) we developed the

odML-tables package3 which provides a framework to convert
between odML and spreadsheets saved in the Excel or CSV
format. To simplify editing templates it is advisable to create
multiple smaller templates (e.g., into the top-level Sections).
These parts can then be handled independently and are later
easily merged back into the final structure. This approach
facilitates the development and editing even of large odML
structures. The top of Figure 7 illustrates how three templates of
the example experiment (Project_Temp, UtahArray_Temp, and
Subject_Temp) representing the three possible template formats
(i-iii) are merged into one large “empty” odML file via the Python
odML library.

Once a template is created, as a second step, the user has to
write or reuse a set of routines which compile metadata from the
various sources and integrate them into a copy of the template
and save them as files of the comprehensive metadata collection
(see Figure 7, left part). Although, it would be desirable if the
complete workflow of loading and integrating metadata into
one or multiple file(s) of a comprehensive metadata collection
would be automatized, in most experiments it cannot be avoided
that some metadata need to be entered by hand (see Section
2). Importantly, we here avoid direct manual modification of

3https://github.com/INM-6/python-odmltables

FIGURE 7 | Schematic workflow for generating odML files in the reach-to-grasp experiment. The Templates box (top): illustrates three out of six template

parts which are used to build the complete, but (mostly) empty odML Document combining metadata of one recording session in the experiment. The three possible

template formats (script, odML file, and spreadsheet) are indicated within the gray shaded boxes (left to right, respectively). The Metadata collection box (left) illustrates

all metadata sources of a recording session (black labeled small boxes) ordered according to file formats (white boxes). Labels of metadata sources are listed in

Table 2. The central large white box shows the workflow of the odML generator routine (odMLGenerator.py). Code snippets used at the different steps of this

workflow are illustrated in the smaller gray scaled boxes whose colors represent the software used for the code (see legend right of center). The black colored boxes

indicate files or file stages. The workflow consists of 5 steps: (i) loading all template parts, (ii) merging all template parts into one empty odML Document, (iii) loading all

metadata sources of a session, partially with custom-made routines (metadata_io), (iv) integrating all metadata sources into the empty odML Document using

custom-made routines (metadata_io), and (v) saving the filled odML Document as odML file of the corresponding recording session. The Metadata collection box

(right) illustrates the reduction of all metadata sources of one recording session to one metadata source (odML file).

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2016 | Volume 10 | Article 26

https://github.com/INM-6/python-odmltables
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

FIGURE 8 | Python code to create an odML file. Python code to create the Subject_Demo.odml which is schematically shown in Figure 5.

Frontiers in Neuroinformatics | www.frontiersin.org 14 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

the comprehensive metadata files. Instead, the final metadata
collection is always created from a separate file containing
manually entered metadata. This approach has the advantage
that, if at one point the structure needs to be changed, these
manual entries will remain intact. Practically, manual metadata
entries are collected into a source file that is in a machine-
readable format, such as text files, CSV format, Excel, HDF54,
JSON5, or directly in the format of the chosen metadata
management software (e.g., odML), and use the corresponding
libraries for file access to load and integrate them into the
file(s) of the comprehensive metadata collection. In the example
experiment we stored manual metadata in spreadsheets that
are accessible by the odML-tables package. In the special
case that these manual metadata entries are constant across
the collection (e.g., project information, cf. Table 2), one can
even reduce the number of metadata sources by entering
the corresponding metadata directly into the templates (e.g.,
Project_Temp in Figure 7). This avoids unnecessary clutter in
the later compilation of metadata and facilitates consistency
across odML files. Metadata that are not constant across odML
files should be preferably stored in source files that adhere
to standard file formats which can be loaded via generic
routines. For this reason, all spreadsheet source files in the
presented experiment were designed to be compatible with the
odML-tables package (see Subject_Temp in Figure 7 and as
example in Figure 9). Furthermore, the files generated by the
Blackrock data acquisition system as well as the results of the
LFP quality assessment are loadable via the file interfaces of
the Neo Python library (Garcia et al., 2014) which provides
standardized access to electrophysiological data. Nevertheless,
for the example experiment it was still necessary to write
also custom loading and integration routines from scratch
to cover all metadata from the various sources (e.g., .hdf5

4https://www.hdfgroup.org
5http://www.json.org

and .mat files for results of the various preprocessing steps in
Figure 7).

In summary, this two stage workflow of first generating
templates, and then filling them from multiple source files
guarantees flexibility and consistency of the metadata collection
over time. In particular, in a situation where the structure needs
to be changed at a later time (e.g., if newmetadata sources need to
be integrated) one only needs to adapt or extend the template as
well as the code that fills the template with metadata in order to
generate a consistent, updated metadata collection from scratch.
If the metadata management can be planned in advance, one
should attempt to optimize the corresponding workflow in the
following aspects:

• Use existing templates (e.g., the Utah array odML template) to
increase consistency with other experimental studies.

• Keep the number of metadata sources at a minimum.
• Avoid hidden knowledge in the form of handwritten notes

or implicit knowledge of the experimenter by transferring
such information into a machine-readable format (e.g.,
standardized Excel sheets compatible with odML-tables)
early on.

• Automatize the saving of metadata as much as possible.

5. DISCUSSION

We have outlined how to structure, collect and distribute
metadata of electrophysiological experiments. In particular,
we demonstrated the importance of comprehensible metadata
collections (i) to facilitate enrichment of data with additional
information, including post-processing steps, (ii) to gain
accessibility to themetadata by pooling information from various
sources, (iii) to allow for a simple and well-defined selection
of data based on metadata information using standard query
mechanisms, (iv) to create textual and graphical representations

FIGURE 9 | Screen shot of a spreadsheet that can be automatically transferred to a corresponding odML template. This example is generated from the

template of the Subject branch (Subject_TPL). The .xls file representation is used to fill the template part with the corresponding metadata of the reach-to-grasp

experiment (compare to Figure 5). Default values which should be manually changed to actual metadata are marked in red. To be able to directly use such a .xls file

as template and later directly translate it to the odML format one should at least include the Section Definition as additional column [e.g., for “Path: /Subject” add

“Section Definition: Information on the investigated experimental subject (animal or person)”].

Frontiers in Neuroinformatics | www.frontiersin.org 15 July 2016 | Volume 10 | Article 26

https://www.hdfgroup.org
http://www.json.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

of sets of related metadata in a fast manner in order to screen
data across the experiment, and (v) to formalize communication
in collaborations by means of metadata queries. We illustrated
how to practically create a metadata collection from data using
the odML framework as example, and how to utilize existing
metadata collections in the context of the five use cases.

In light of the increasing volume of data generated in
complex experiments, neuroscientists, in particular in the field of
electrophysiology, are facing the need to improve the workflows

of the daily scientific life (Denker and Grün, in press). In this
context, the aspects of handlingmetadata for electrophysiological
experiments described above should be considered as part of
such workflows. We conducted a survey among members of the
electrophysiology and modeling community (N = 52) in 2011 to
better understand how scientists think about the current status of
their workflow, which aspects of their work could be improved,
and to what extent these researchers would embrace efforts to
improve workflows. In Figure 10 we show a selection of survey

A

B

C

D E

FIGURE 10 | Responses to five selected questions taken from a survey among scientists who deal with electrophysiological data sets. The online

survey was hosted on “Google Drive” and a total of 52 responders filled the questionnaire in the time period June 12 through October 17, 2011 (Associate/full

professor: 18%, Assistant professor: 22%, Post-doc: 28%, PhD student 30%, no response 2%; self-reported). For questions A–C multiple answers could be given by

a single person. The number of responders N is provided separately for each question.

Frontiers in Neuroinformatics | www.frontiersin.org 16 July 2016 | Volume 10 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

responses that are closely related to the role of metadata in
setting up such workflows. 48% of responders reported that the
increased complexity of data sets greatly influences their work
(question D). When asked about which features characterize
their data, it is obvious that multiple factors of complexity
come into play, including the number of sessions, data size,
dependencies between different data records (question A). In
total, 93% believed that making available best-practice guidelines
and workflow solutions would be beneficial for the community
(question E). Handling metadata in the odML framework
represents one option in designing best-practice for building such
a workflow (question C). In fact, 46% of responders believed that
a common description of metadata would be required to achieve
that scientific work can be reproduced, verified and extended by
other researchers. At present, 44% of researchers stated also that
they find it difficult to compare their results to those obtained
by other researchers working on the same or similar data due to
differences in preprocessing steps and data selection (question B;
cf., use case 5). The results of the full survey can be found under
http://www.csn.fz-juelich.de/survey.

While the storage of metadata to improve the overall
experimental and analysis workflow is technically feasible, it
cannot solve the intrinsic problem of identifying the metadata in
an experiment, collecting the individual metadata, and pooling
them in an automatic way. All of these steps are not trivial and
are time-consuming by nature, in particular when organizing
metadata for a particular experiment for the first time. Currently,
no funding is granted for such tasks, and software tools that
support the automated generation and usage of metadata are
largely missing. Therefore, rightly the questionmay arise whether
it is truly worth the effort. Through the illustration of use
cases, we hope to have convinced the reader that indeed
numerous advantages are associated with a well-maintained
metadata collection that accompanies the data. For the individual
researcher these can possibly be best summarized by the ease
of organizing, searching and selecting datasets based on the
metadata information. Even more advantages are gained for
collaborative work. First, an easily accessible central source for
metadata information ensures that all researchers access the exact
same information. This is particularly important if metadata are
difficult to access from the source files, hand-written notebooks
or via a specialized program code, or if the metadata need to be
collected from different locations. Second, the communication
between collaborators becomes more precise by the strict use
of defined property-value pairs, lowering the probability for
unintended confusion. Last but not least, once the metadata
collection structure, content and method of creation are defined
by the experimenter, metadata entry and compilation will in
general run very smoothly, be less error prone, and will even
save time in comparison to traditional methods. Thus, we believe
that there are a number of significant advantages that justify the
initial investment of including automated metadata handling as
part of the workflow of an electrophysiological experiment. The
survey results presented above reveal that these advantages are
also increasingly recognized by the community. Furthermore,
as scientists we have the obligation to properly document our
scientific work in a clear fashion that enables the highest degree of

reproducibility. Reproducibility becomes increasingly recognized
by publishers and funding agencies (Morrison, 2014; Candela
et al., 2015; Open Science Collaboration, 2015; Pulverer, 2015),
such that appropriate resources of time and man-power allocated
to produce more sophisticated data management will become a
necessity. It is thus not only important to gain experience in how
to document data properly, but also to produce better tools that
reduce the time investment required for these steps.

As a result of our experience with complex analysis of
experiments in systems neuroscience as reported in this paper,
one of our recommendations is to record as much information
about the experiment as possible. This may seem in contrast
to efforts specifying minimal information guidelines in the life
sciences (MIBBI; Taylor et al., 2008, MINI; Gibson et al., 2009).
However, those initiatives target the use case where data are
uploaded to a public database, and their goal is to achieve a
balance of information detail such that the minimally sufficient
information is provided to make the data potentially useful for
the community. They are not meant as guidelines for procedures
in the laboratory. To ensure reproducibility of the primary
analysis, but also in the interest of future re-use of the data, we
argue that it is highly desirable to store all potentially relevant
information about an experiment.

We have exemplified the practical issues of metadata
management using the odML metadata framework as one
particular method. Similar results could be obtained using other
formats. RDF6 is a powerful standard approach specifically
designed for semantic annotation of data. Many libraries and
tools are available for this format, and in combination with
ontologies it is highly suitable for standardization. However,
efficiently utilizing this format requires elaborate technology that
is not easy to use. Simpler formats like JSON7 or YAML8 are
in many respects similar to the XML schema used for odML,
and we would expect that they have been used in individual
labs to realize approaches similar to the one presented here.
We are, however, not aware of specific tools available for the
collection of metadata that use these formats. In addition, none
of these alternative formats provide specific support for storing
measured quantities as odML does. Using a combination of
XML and HDF59 has been proposed to define a format for
scientific data (Millard et al., 2011), which could in principle
be used for metadata collection. However, requiring extensive
schema definitions it is much less flexible and lightweight than
odML. Solutions for the management of scientific workflows, like
Taverna10, Kepler11, VisTrails12, KNIME13, Wings14 (Badia et al.,
2015), are targeted toward standardized and reproducible data
processing workflows. We are focusing here on the management
of experimental metadata, and a consideration of data processing
would go beyond this scope. Workflow management systems

6https://www.w3.org/RDF/
7http://www.json.org/
8http://yaml.org/
9https://www.hdfgroup.org/HDF5/
10http://www.taverna.org.uk/
11https://kepler-project.org/
12http://www.vistrails.org/
13https://www.knime.org/knime/
14http://www.wings-workflows.org/

Frontiers in Neuroinformatics | www.frontiersin.org 17 July 2016 | Volume 10 | Article 26

http://www.csn.fz-juelich.de/survey
https://www.w3.org/RDF/
http://www.json.org/
http://yaml.org/
https://www.hdfgroup.org/HDF5/
http://www.taverna.org.uk/
https://kepler-project.org/
http://www.vistrails.org/
https://www.knime.org/knime/
http://www.wings-workflows.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

could be utilized for managing metadata, but their suitability
for the collection of metadata during the experiment seems
limited. Nevertheless, the approach we have described here must
ultimately be combined with such systems, as the development
of automated workflows depends critically on the availability
of a metadata collection. Likewise, our approach is suitable for
combination with provenance tracking solutions like Sumatra
(Davison et al., 2014).

Indeed, while we believe that using a metadata framework,
such as odML, represents an important step toward better data
and metadata management, it is also clear that this approach has
a number of potential improvements. A natural step would be
for odML to become an intrinsic file format for the commercially
available data acquisition systems, such that their metadata are
instantly available for inclusion in the user’s hierarchical tree.
In this context, the odML format so far has been adopted
in the connectome file format15, the Relacs data acquisition
and stimulation software16, and the EEGBase database for
EEG/ERP data17.

Likewise, the availability of interfaces for easy odML export
in popular experiment control suites, vendor-specific hardware
or generic software, such as LabVIEW, would greatly speed up
the metadata generation. In addition, a repository for popular
terminologies and hardware devices has been initiated by the
German Neuroinformatics Node18, which is open for any
extensions by the community. More importantly, in conditions
where the details of recording or post-processing steps may
change over time, it is essential to keep track also of the
versions of the code that generated a certain post-processing
result, including the corresponding libraries used by the code
and installed on the computer executing the code. Popular
solutions to version control (e.g., git) or provenance tracking
(e.g., Sumatra; Davison et al., 2014) offer mechanisms to keep
track of this information. However, it is up to the user to make
sure that information about the correct version numbers or hash
values provided by these systems are saved to the file containing
the metadata collection to guarantee that metadata can be linked
to its provenance trail. The more direct integration of support for
metadata recording into the various tools performing the post-
processing would allow to automatize this process, leading to a
more robust metadata collection, paired with enhanced usability.

A perhaps more challenging problem is devising mechanisms
that link the metadata to the actual data objects they refer
or relate to. This issue becomes particularly clear in the
context of the Neo library (Garcia et al., 2014), which is an
open-source Python package that provides data objects for
storing electrophysiological data, along with file input/output for
common file formats. The Neo library could be used to read
a particular spike train that relates to a certain unit ID in the
recording, while the corresponding odML file contains for each
unit ID the information about the assigned unit type (SUA,
MUA, or noise) and the signal-to-noise ratio (SNR) obtained
by the spike sorting preprocessing step. A common task would

15https://www.nitrc.org/projects/cff/
16http://www.relacs.net/
17https://eegdatabase.kiv.zcu.cz/
18http://portal.g-node.org/odml/terminologies/v1.0/terminologies.xml

now be to link these two pieces of information in a generic
way. Currently, it is up to the user to manually extract the SNR
of each neuron ID from the metadata, and then annotate the
spike train data with this particular piece of metadata. This is a
procedure that is time-consuming, and again may be performed
differently by partners in a collaboration causing incoherence in
the workflow. Recently, the NWB format (Teeters et al., 2015)
was proposed as a file format to store electrophysiological data
with a detailed, use-case specific data and metadata organization.
In contrast, the NIX file format19 (Stoewer et al., 2014) was
proposed as a more general solution to link data and metadata
already on the file level. In this approach metadata are organized
hierarchically as in odML, but can be linked to the respective
data stored in the same file. This enables relating data and
metadata meaningfully to facilitate and automate data retrieval
and analysis.

Finally, convenient manual metadata entry is an important
requirement for collecting metadata of an experiment. In the case
of odML, while the existing editor enables researchers to fill in
odML files, a number of convenience features would not only
reduce the amount of time required to collect the information,
but could also provide further incentives to store metadata in
the odML format. An example for the former could be an editor
support for templates such that new files with default values may
be created quickly, while an example for the latter could be to
provide more flexible ways to display metadata in the editor.
The odML-tables library, which can transform the hierarchical
structure of an odML file to an editable flat table in the Excel or
CSV format, is one current attempt to solve these issues in the
odML framework. The conversion of odML to commonly known
spreadsheets increases the accessibility of odML for collaborators
with little programming knowledge. Another particularly notable
project aimed to improve the manual entries of metadata during
an experiment is the odML mobile app (Le Franc et al., 2014)
that runs on mobile devices that are easy to carry around in a lab
situation.

The odML framework by itself is of a general nature
and can easily be used in other domains of neuroscience
than electrophysiology, or even other fields of science. An
obvious use case would be to store metadata of neuroscientific
simulation experiments. As we witness a similar increase in
the complexity of in silico data, providing adequate metadata
records to describe these data gains importance. However,
datasets emerging from simulations differ in the composition
of their metadata in terms of the more advanced technical
descriptions required to capture the mathematical details of the
employed models (e.g., descriptions using NeuroML; Gleeson
et al., 2010; Crook et al., 2012), and by the fact that simulations
are often described on a procedural rather than a declarative
level (e.g., descriptions based on PyNN; Davison et al., 2008).
How these can be best linked to more generic standards
for metadata capture and representation, and what level of
description of metadata is adequate in this scenario, remains
a matter of investigation supported by use-cases, as performed
here for experimental data. A common storage mechanism for

19http://www.g-node.org/nix

Frontiers in Neuroinformatics | www.frontiersin.org 18 July 2016 | Volume 10 | Article 26

https://www.nitrc.org/projects/cff/
http://www.relacs.net/
https://eegdatabase.kiv.zcu.cz/
http://portal.g-node.org/odml/terminologies/v1.0/terminologies.xml
http://www.g-node.org/nix
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

metadata of experimental and simulated data would simplify
their comparison, a task that is bound to become increasingly
important for the future of Computational Neuroscience.
Using a well-defined, machine-readable format for metadata
brings the potential for integration of the information across
heterogeneous datasets, for example in larger databases or data
repositories.

In summary, the complexity of current electrophysiological
experiments forces the scientific community to reorganize their
workflow of data handling, including metadata management, to
ensure reproducibility in research (Stodden et al., 2014). Readily
available tools to support metadata management, such as odML,
are a vital component in constructing such workflows. It is
our responsibility to propagate and incorporate these tools into
our daily routines in order to improve workflows through the
principle of co-design between scientists and software engineers.

AUTHOR CONTRIBUTIONS

LZ, MD, and SG designed the research. LZ, TB, and AR
performed the research. LZ, MD, JG, FJ, ASo, ASt, and

TW contributed to unpublished software tools. All authors
participated in writing the paper.

ACKNOWLEDGMENTS

We commemorate Paul Chorley and thank him for his valuable
input during the development of the metadata structures and
templates. We thank Benjamin Weyers and Christian Kellner
for valuable discussions. This work was partly supported by
Helmholtz Portfolio Supercomputing and Modeling for the
Human Brain (SMHB), Human Brain Project (HBP, EU Grant
604102), German Neuroinformatics Node (G-Node, BMBF
Grant 01GQ1302), BrainScaleS (EU Grant 269912), and DFG
SPP Priority Program 1665 (GR 1753/4-1 and DE 2175/1-1).
ANR-GRASP, CNRS, and Riken-CNRS Research Agreement.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fninf.
2016.00026

REFERENCES

Baca, M. (2008). Introduction to Metadata, Vol. 3.0, Online Edn. Los Angeles, CA:

Getty Publications.

Badia, R., Davison, A., Denker, M., Giesler, A., Gosh, S., Goble, C., et al. (2015).

INCF Program on Standards for data sharing: new perspectives on workflows

and data management for the analysis of electrophysiological data. Technical

Report International Neuroinformatics Coordination Facility (INCF). Available

online at: https://www.incf.org/about-us/history/incf-scientific-workshops

Berenyi, A., Somogyvari, Z., Nagy, A. J., Roux, L., Long, J. D., Fujisawa, S.,

et al. (2013). Large-scale, high-density (up to 512 channels) recording of

local circuits in behaving animals. J. Neurophysiol. 111, 1132–1149. doi:

10.1152/jn.00785.2013

Candela, L., Castelli, D., Manghi, P., and Tani, A. (2015). Data journals: a survey. J.

Assoc. Inform. Sci. Technol. 66, 1747–1762. doi: 10.1002/asi.23358

Crook, S. M., Bednar, J. A., Berger, S., Cannon, R., Davison, A. P., Djurfeldt, M.,

et al. (2012). Creating, documenting and sharing network models. Network 23,

131–149. doi: 10.3109/0954898X.2012.722743

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et

al. (2008). PyNN: a common interface for neuronal network simulators. Front.

Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Davison, A. P., Mattioni M., Samarkanov D., and Teleńczuk B. (2014). “Sumatra: a

toolkit for reproducible research,” in Implementing Reproducible Research, eds

V. Stodden, F. Leisch, and R. D. Peng (Boca Raton, FL: Chapman &Hall/CRC),

57–79.

Deisseroth, K., and Schnitzer, M. J. (2013). Engineering approaches to

illuminating brain structure and dynamics. Neuron 80, 568–577. doi:

10.1016/j.neuron.2013.10.032

Denker, M., and Grün, S. (in press). “Designing workflows for the reproducible

analysis of electrophysiological data,” in Brain Inspired Computing, eds K.

Amunts, L. Grandinetti, T. Lippert, and N. Petkov (Cham; Heidelberg; New

York, NY; Dordrecht; London: Springer), Lecture Notes in Computer Science.

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg,

P. L., et al. (2014). Neo: an object model for handling electrophysiology

data in multiple formats. Front. Neuroinform. 8:10. doi: 10.3389/fninf.2014.

00010

Geisler, W. S. (2008). Visual perception and the statistical properties of

natural scenes. Annu. Rev. Psychol. 59, 167–192. doi: 10.1146/annurev.

psych.58.110405.085632

Gibson, F., Overton, P., Smulders, T., Schultz, S., Eglen, S., Ingram, C.,

et al. (2009). Minimum Information about a Neuroscience Investigation

(MINI): Electrophysiology. Available online at: http://precedings.nature.com/

documents/1720 (Nature Precedings).

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,

M., et al. (2010). NeuroML: a language for describing data driven models of

neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Grewe, J., Wachtler, T., and Benda, J. (2011). A bottom-up approach to

data annotation in neurophysiology. Front. Neuroinform. 5:16. doi: 10.3389/

fninf.2011.00016

Hines, W. C., Su, Y., Kuhn, I., Polyak, K., and Bissell, M. J. (2014). Sorting

out the FACS: a devil in the details. Cell Rep. 6, 779–781. doi: 10.1016/j.cel

rep.2014.02.021

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,

et al. (2003). The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics

19, 524–531. doi: 10.1093/bioinformatics/btg015

Laine, C. (2007). Reproducible research: moving toward research the public

can really trust. Ann. Intern. Med. 146, 450. doi: 10.7326/0003-4819-146-6-

200703200-00154

Le Franc, Y., Gonzalez, D., Mylyanyk, I., Grewe, J., Jezek, P., Mouček, R., et al.

(2014). Mobile metadata: bringing neuroinformatics tools to the bench. Front.

Neuroinform. 8:53. doi: 10.3389/conf.fninf.2014.18.00053

Lewis, C., Bosman, C., and Fries, P. (2015). Recording of brain activity

across spatial scales. Curr. Opin. Neurobiol. 32, 68–77. doi: 10.1016/j.conb.

2014.12.007

Lisman, J. (2015). The challenge of understanding the brain: where we stand in

2015. Neuron 86, 864–882. doi: 10.1016/j.neuron.2015.03.032

Maldonado, P., Babul, C., Singer, W., Rodriguez, E., Berger, D., and Grün,

S. (2008). Synchronization of neuronal responses in primary visual cortex

of monkeys viewing natural images. J. Neurophysiol. 100, 1523–1532. doi:

10.1152/jn.00076.2008

Merriam-Webster (2016). Merriam-Webster Online Dictionary. Available online

at: http://www.merriam-webster.com/dictionary/metadata (Retrieved July 6,

2016).

Milekovic, T., Truccolo, W., Grün, S., Riehle, A., and Brochier, T. (2015). Local

field potentials in primate motor cortex encode grasp kinetic parameters.

NeuroImage 114, 338–355. doi: 10.1016/j.neuroimage.2015.04.008

Frontiers in Neuroinformatics | www.frontiersin.org 19 July 2016 | Volume 10 | Article 26

http://journal.frontiersin.org/article/10.3389/fninf.2016.00026
https://www.incf.org/about-us/history/incf-scientific-workshops
http://precedings.nature.com/documents/1720
http://precedings.nature.com/documents/1720
http://www.merriam-webster.com/dictionary/metadata
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Zehl et al. Handling Metadata in a Neurophysiology Laboratory

Millard, B. L., Niepel, M., Menden, M. P., Muhlich, J. L., and Sorger, P. K. (2011).

Adaptive informatics for multi-factorial and high content biological data. Nat.

Methods 8, 487–493. doi: 10.1038/nmeth.1600

Miyamoto, D., and Murayama, M. (2015). The fiber-optic imaging and

manipulation of neural activity during animal behavior.Neurosci. Res. 103, 1–9.

doi: 10.1016/j.neures.2015.09.004

Morrison, S. J. (2014). Time to do something about reproducibility. eLife 3:e03981.

doi: 10.7554/eLife.03981

Nicolelis, M. A. L., and Ribeiro, S. (2002). Multielectrode recordings: the

next steps. Curr. Opin. Neurobiol. 12, 602–606. doi: 10.1016/S0959-4388(02)

00374-4

Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D. J., and Frey, U. (2014).

Revealing neuronal function through microelectrode array recordings. Front.

Neurosci. 8:423. doi: 10.3389/fnins.2014.00423

Open Science Collaboration (2015). Estimating the reproducibility of

psychological science. Science 349:aac4716. doi: 10.1126/science.aac4716

Peng, R. D. (2011). Reproducible research in computational science. Science 334,

1226–1227. doi: 10.1126/science.1213847

Pulverer, B. (2015). Reproducibility blues. EMBO J. 34, 2721–2724. doi: 10.15252/

embj.201570090

Riehle, A., Wirtssohn, S., Grün, S., and Brochier, T. (2013). Mapping the spatio-

temporal structure of motor cortical LFP and spiking activities during reach-

to-grasp movements. Front. Neural Circuits 7:48. doi: 10.3389/fncir.2013.

00048

Schwarz, D. A., Lebedev, M. A., Hanson, T. L., Dimitrov, D. F., Lehew, G.,

Meloy, J., et al. (2014). Chronic, wireless recordings of large-scale brain activity

in freely moving rhesus monkeys. Nat. Methods 11, 670–676. doi: 10.1038/

nmeth.2936

Stodden, V., Leisch, F., and Peng, R. D. (eds.). (2014). Implementing Reproducible

Research (Chapman & Hall/CRC The R Series). Boca Raton, FL: Chapman and

Hall/CRC.

Stoewer, A., Kellner, C., Benda, J., Wachtler, T., and Grewe, J. (2014). File format

and library for neuroscience data and metadata. Front. Neuroinform. 8:27. doi:

10.3389/conf.fninf.2014.18.00027

Taylor, C. F., Field, D., Sansone, S.-A., Aerts, J., Apweiler, R., Ashburner, M., et al.

(2008). Promoting coherent minimum reporting guidelines for biological and

biomedical investigations: the MIBBI project. Nat. Biotech. 8, 889–896. doi:

10.1038/nbt.1411

Teeters, J. L., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B., et al.

(2008). Neurodata without borders: creating a common data format for

neurophysiology. Neuron 4, 629–634. doi: 10.1016/j.neuron.2015.10.025

Tomasello, M., and Call, J. (2011). Methodological challenges in the study of

primate cognition. Science 334, 1227–1228. doi: 10.1126/science.1213443

Vargas-Irwin, C. E., Shakhnarovich, G., Yadollahpour, P., Mislow, J. M. K., Black,

M. J., and Donoghue, J. P. (2010). Decoding complete reach and grasp actions

from local primary motor cortex populations. J. Neurosci. 30, 9659–9669. doi:

10.1523/JNEUROSCI.5443-09.2010

Verkhratsky, A., Krishtal, O. A., and Petersen, O. H. (2006). FromGalvani to patch

clamp: the development of electrophysiology. Pflugers Arch. 453, 233–247. doi:

10.1007/s00424-006-0169-z

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Zehl, Jaillet, Stoewer, Grewe, Sobolev, Wachtler, Brochier, Riehle,

Denker and Grün. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 20 July 2016 | Volume 10 | Article 26

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Supplementary Material:
Handling Metadata in a Neurophysiology
Laboratory
Lyuba Zehl ∗, Florent Jaillet, Adrian Stoewer, Jan Grewe, Andrey Sobolev,
Thomas Wachtler, Thomas Brochier, Alexa Riehle, Michael Denker, and
Sonja Grün
*Correspondence:
Lyuba Zehl
l.zehl@fz-juelich.de

1 A COMPLEX NEUROPHYSIOLOGICAL EXPERIMENT

To analyze electrophysiological data and to relate the neuronal data to behavior the full details of the
experiment, the experimental setup including the detailed signal flows need to be known. In the main
text, we decided to put only a comprised description together with a figure of the setup Figure 1 and two
complementary tables (Table 1 and Table 2). For the sake of completeness, we here give a more detailed
description of the example experiment. The information given is organized according to the different phases
of such an experiment and their relevance in respect to the metadata use cases outlined in the main text.

1.1 The task

Three monkeys (Macaca mulatta; 2 females, L, T; 1 male, N) were trained to grasp an object using one
of two different grip types (side grip, SG, or precision grip, PG) and to pull it against one of two possible
loads requiring either a high (HF) or low (LF) pulling force. In each trial, instructions for the requested
behavior were provided to the monkeys through two consecutive visual cues (C and GO) which were
separated by a one second delay and generated by the illumination of specific combinations of 5 LEDs
positioned above the object. Information about the design and the mechanical engineering of the apparatus
(e.g. the system providing the visual cue) were collected into a project specific info spreadsheet by the
experimenter (label 0 in Figure 1, and Table 2). The experimental trial scheme including all behavioral
events, behavioral periods, and stimuli are illustrated at the bottom of Figure 1 and described in Table 1.
The corresponding metadata, such as the timing of the trial events, the typical duration of each period
as well as their definitions and convenient abbreviations, were also collected in the project specific info
spreadsheet.

1.2 The pre-recording period

When the monkey was fully trained in the task, a 100-electrode Utah array (Blackrock Microsystems,
Salt Lake City, UT, USA) was surgically implanted in the motor cortex contralateral to the working hand.
Details on the array (e.g. serial number, geometry, insulation, connector type) were collected in a Blackrock
configuration spreadsheet by the experimenter (label 4 in Figure 1, and Table 2). Information about each
electrode (e.g. ID, spatial location, impedance) was provided by the supplier (Blackrock Microsystems) in
a non-machine-readable format, and therefore was transferred into an electrode configuration text file (label

1

Zehl et al. Supplementary Material

2 in Figure 1 and Table 2). To be able to compare recordings across monkeys, a generalized order of the
electrode IDs with respect to the individual anatomical placement of the array on the cortical surface was
made by the experimenter and saved in a second array-specific text file (label 3 in Figure 1 and Table 2).
All information about the training (e.g., duration, trainer, approach) and the surgery (e.g., pre-medication,
surgeon, anesthesia) was collected in handwritten protocols. Later, key information about surgery and
training (e.g., training duration, date of the surgery, implanted hemisphere) was extracted from these
protocols and transferred, along with the links to the original files, into the subject or array specific info
spreadsheet (label 1 in Figure 1 and Table 2). The subject or array specific info spreadsheet also included
profile information for each monkey (e.g. birthday, species, name, working hand).

1.3 The recording period

The recording period lasted for at least half a year for each monkey. Recording sessions were performed
on a daily basis, 5 days per week, and each lasted for about 2 hours. Within each recording day, data were
recorded in 4 to 8 sessions, each saved in a set of 3 data files (.nev, .ns5/.ns6, and .ns2; labels 5, 6a, and 6b
in Figure 1, and Table 2). Each session had a recording duration of about 15 min and was composed of 100
to 200 trials of a specified task condition. A task condition is defined by the order of the cue presentations
(grip-cue first or force-cue first), the combination of 1, 2 or 4 trial types (PG/HF, PG/LF, SG/HF, SG/LF,
HF/PG, HF/SG, LF/PG, LF/SG) and their sequence of presentation in the session (random or block design).
The abbreviations and the respective numerical codes for the trial types and task conditions were again
collected in the project specific info spreadsheet (label 0 in Figure 1, and Table 2).

The task condition was selected for each session by the experimenter depending on the mood and
motivation of the monkey and the scientific question to be addressed. During some recording days,
additional complementary experiments were performed, such as mapping the receptive fields (by passively
moving (parts of) the limb or by tactile stimulation, see Riehle et al. 2013), or performing intra-cortical
micro-stimulation. Thus, over the whole recording period, hundreds of data files were recorded. Information
specific for each session (e.g. weekday, the chosen task condition, mood of the monkey) was first registered
into a handwritten notebook and later transferred to the recording specific spreadsheets (label 7 in Figure 1,
and Table 2).

1.4 The recording procedure and main preprocessing steps

The experimental setup (illustrated in Figure 1) was composed of two streams of signals: A) the recording
and processing of neuronal signals (yellow arrows), B) the task control and recording of behavioral events
(green and blue arrows).

The flow of the neuronal signals (stream A, yellow) started with cortical recordings with the Utah array.
The signals from each active electrode were transmitted to a high density connector fixed to the skull. They
were then processed by a headstage, attached directly to the connector, to improve the signal-to-noise ratio.
The type of headstage was specified in the recording specific spreadsheet (label 7 in Figure 1 and Table 2)
after each corresponding recording day. The signals were then transferred to the Front-End Amplifier to be
amplified (gain factor: 5000), hardware-filtered (band-pass with cutoff frequencies 0.3 Hz and 7.5 kHz)
and digitized (30 kHz). The hardware information about the Front-End Amplifier was entered into the
Blackrock configuration spreadsheet (label 4 in Figure 1, and Table 2) at the beginning of the project.
These processed ’raw’ signals were transmitted to the Neural Signal Processor (NSP) via an optic fiber. The
NSP was controlled by Central Suite (data acquisition software of Blackrock Microsystems) running under
Windows on the data acquisition PC. Within the NSP the signals were further processed and saved to disk

2

Zehl et al. Supplementary Material

into two output streams: (i) a direct output stream which was saved as .ns6 file (monkey N) or .ns5 (monkey
L and T) depending on the version of Central Suite (for both see label 6a in Figure 1 and Table 2), and (ii)
a downsampled (1 kHz) and digitally low-pass filtered (cutoff frequency 250 Hz) output stream designed to
capture the LFP which was saved as .ns2 file (label 6b in Figure 1, and Table 2). Information about how
the signals were processed and saved was distributed over several source files. Before the recording period
of each monkey, the hardware properties of the NSP and general information about Central Suite and the
data acquisition PC were entered into the Blackrock configuration spreadsheet (label 4). The hardware
settings of the NSP defined by Central Suite were, however, saved in the recording specific spreadsheet
(label 7 in Figure 1 and Table 2) and in the data files (label 5, 6a, and 6b Figure 1 and Table 2).

In parallel to the continuously sampled neuronal signals, a high-resolution (30kHz) high-pass filtered
signal stream (at 500Hz in monkey T and L, and 250Hz in monkey N) was used to identify and save
spiking activities online. For this, a user-defined threshold on each recording channel was set via the spike
sorting module of Central Suite for each session to extract potential spike shapes (waveforms). However,
these thresholds were not modified during a session. The waveforms were saved in the .nev file (label 5 in
Figure 1 and Table 2), together with their respective time stamps. The size of the extracted time window
for the waveforms (1.6 ms in monkey T and L, and 1.3 ms in monkey N) was set for the complete recording
period of each monkey and therefore saved in the Blackrock configuration spreadsheet (label 4 in Figure 1
and Table 2).

The actual sorting of the extracted waveforms into single unit (SUA) or multi unit activities (MUA) was
performed as a semi-automatic preprocessing step via the Plexon offline Spike Sorter (Plexon Inc, Dallas,
Texas, USA; version 3.3). The sorting results were saved in an additional .nev file by Plexon (label 8 in
Figure 1 and Table 2). The assignment of unit IDs to noise, SUA and MUA was defined in a hand written
spike sorting specific text file (label 9 in Figure 1 and Table 2). To assess the quality of the identified units,
a characterization of their waveforms (e.g., amplitude, width, signal-to-noise ratio) was performed using a
custom MATLAB program that stored the results in a .mat file (label 10 in Figure 1 and Table 2).

The behavioral signals (stream B, green and blue) were monitored and controlled in real-time by
LabVIEW (software of the National Instruments Corporation, Austin, Texas, USA) which ran on a second
PC. In parallel, the behavioral events (digitized by an Analog-to-Digital Converter of National Instruments,
where required) and signals were fed into the NSP and saved along with the neuronal events (.nev file, label
5 in Figure 1 and Table 2) or analog signals (.ns2 file, label 6b in Figure 1 and Table 2). The behavioral
analog signals, registered at the force and displacement sensors attached to the object, were later offline
processed via a custom MATLAB program to extract the performed pulling force and the event times (OT,
HS, and OR). The results and parameters used for this preprocessing step were saved in two .mat files
(labels 11 and 12 in Figure 1 and Table 2).

Another standard preprocessing step was the quality control of the LFP signals by custom Python program
(see Computer - Quality Check, Figure 1) for the elimination of individual trials (on all electrodes) or
individual electrodes (in all trials) which were corrupted by large artifacts or noise. This procedure was
semi-automatic, i.e. the experimenter needed to visually control and, if necessary, adjust the criteria (e.g.,
based on the variance of the LFP) and redo the analysis. The results and parameters of this preprocessing
step were documented in a .hdf5 file (label 13 in Figure 1 and Table 2).

1.5 Summary of metadata sources

To transform these various metadata sources into a comprehensive metadata collection it is necessary to
first reorganize them according to the following types of source files:

Frontiers 3

Zehl et al. Supplementary Material

• one source file per experiment containing metadata which are valid for the whole experiment
independent of the used subjects (in our example experiment this matches the project specific info
spreadsheet, label 0 in Figure 1 and Table 2)

• at least one source file for each subject containing metadata which are subject specific (source files
with label 1 in Figure 1 and Table 2 in our example experiment)

• at least one source file for each recording device containing metadata which are valid for the recording
period with the corresponding device (source files with label 2 - 4 in Figure 1 and Table 2 in our
example experiment)

• at least one source file per session containing recording specific metadata (source files with label 5 - 7
in Figure 1 and Table 2 in our example experiment)

• at least one source file for each preprocessing step of each recording containing metadata which are
valid for a specific preprocessing of a specific recording (source files with label 8 - 13 in Figure 1 and
Table 2 in our example experiment)

2 USING AN ODML METADATA COLLECTION

In the main text we described five use cases and showed along those the advantages of a standardized
organization of metadata. Additionally, we provided guidelines for creating a comprehensive metadata
collection. Here we now complement both sections with practical demonstrations. Note that the code
presented can be written in a more compact way, but for better readability we provide a longer, more
explicit code format.

2.1 Manual inspection

As described in use case 2 it can be quite useful to be able to manually inspect a metadata collection to
get familiar with an experimental study. There are three ways of manually screening an odML file.

The first possibility to open an odML file would be to use a simple text editor (see Listing S-1). This is
possible, because odML is based on XML which is a textual data format readable and editable with any
available text editor. It is therefore a quick way to manually inspect or edit the content of an odML file, but
the XML based representation is not convenient for large odML files.

A second possibility to view, but not edit an odML file is to open it via a web browser (Figure S-1). For
this, one has to add the XML-schema file (odML.xsl) to the directory where the odML files are located
before opening them to view. The XML-schema file is available for download on the odML website (termed
’metdataStylesheet’ on http://www.g-node.org/projects/odml/tools). The schema translates the XML based
representation of odML into HTML code which is then interpreted by the web browser into an interactive
web page representation. The web page will show the tree structure of the Sections as a static table of
contents at the top and below all Sections and their Properties as a flat content list. Each Section in the tree
representation is a link to its corresponding flat content representation. This approach is very useful for
screening and browsing through an odML file, especially if it is large and complex.

The third possibility to manually inspect or edit an odML file is to use the odML Editor (Figure S-2). The
editor (’odml-gui’) is part of the Python odML library. Here, the representation of the tree structure of
the Sections is separated from the flat representation of its Properties. The editor window is subdivided into
three parts. The Sections pane (upper left) displays a tree view of all Sections starting from the top level of
the document, the Properties pane (upper right) displays a table containing the Name, Value and the Value

4

http://www.g-node.org/projects/odml/tools

Zehl et al. Supplementary Material

attributes of each Property (row) belonging to a selected Section in the Sections pane, and the attributes
pane (bottom) displays the attributes of the current selected Section, Property or Document. The header of
the attributes pane indicates the path to the selected Section or Property in red starting from the Document
root.

2.2 Navigating the odML structure

Depending on the experiment, the odML structure can become large and complex, thus making it difficult
to find certain metadata within this complex structure. For this reason the odML Python library provides
helper functions which can be used to find and extract metadata values with minimal user knowledge on
the odML structure. In the following we will demonstrate how these helper functions, itervalues(),
iterproperties() and itersections() (collectively referred to as iter functions), can be used
in the scenario we defined for the use cases. For these demonstrations, we assume that an odML metadata
collection for the reach-to-grasp study was already generated resulting in one odML file per session.

Bob wrote an analysis script to test if the firing rates depend on the behavioral condition in the trials,
and he wants to run his analysis script on single unit (SUA) data pooled across sessions. Thus, he needs
to check which recording sessions were already spike sorted. From a previous manual inspection of the
odML files, he remembers that the Property containing this information was called “IsSpikeSorted”. He
also remembers that this Property name is unique and that the type of the metadata Value saved in this
Property is a boolean (True or False). He cannot remember where this Property is located in the complete
tree structure of the odML files (for an example on how to extract odML objects via their absolute path in
the hierarchy, see the odML Python tutorial at http://g-node.github.io/python-odml/). His knowledge is
sufficient enough, though, to make use of the Python odML helper function iterproperties() which
iterates through all Property objects of an odML file and combines it with a filter function that checks for
each Property object if its name is equal to “IsSpikeSorted” (Listing S-2). He knows that this will give him
a list containing exactly one Property containing the requested metadata. He extracts the Property from the
list and accesses the single Value object of the Property to extract the stored metadata of type boolean to
print out if the session he looked at was spike sorted or not.

If an odML Property or Section name is ambiguous, one can extend the filter function to check for several
attributes of the requested object. For example, Bob wants to know the SUA IDs of one particular electrode
with the ID 11. Again from previous inspections of the odML file, he remembers that the Property name
which contains the metadata he is searching for is “SUAIDs” and that it exists as a child object below
each of 96 uniquely named Sections which represent the active electrodes of the Utah array (cf., Figure 6).
He makes use of this fact and extends the filter function not only to make sure that the property name is
“SUAIDs”, but also that the name of the section of his particular electrode “Electrode 011” occurs in the
path of the requested property (see Listing S-3). Bob combines this more complex filter function with the
odML helper function iterproperties() and extracts the requested Property from the resulting list.
He is aware that the Property “SUAIDs” can contain multiple Values which he writes into a list. He then
loops through this list to access the Values containing the SUA IDs of Electrode 011.

Which iter function one has to use, and how complex the filter function should be, depends on both the
structure of the odML file and the user’s need. For automatic extraction of metadata one has to make sure
that the filter function is complex enough to guarantee that the iter function returns only the requested
objects. In case of a large odML structure one should narrow the search down to a certain branch of
the odML file and avoid iterations through Value objects of the odML. Both will save run time in the
implementation.

Frontiers 5

http://g-node.github.io/python-odml/

Zehl et al. Supplementary Material

The search for the Property “SUAIDs” of Section “Electrode 011”, for example, could have been also
written differently, as shown in Listing S-4. Bob knows that, although the Property name “SUAIDs” exists
many times within the odML file, the Section name “Electrode 011” is unique and below this Section only
one Property is named “SUAIDs”. He can make use of this fact by dividing the search for the requested
SUA IDs in two steps. In step one, Bob creates a filter function in combination with the odML helper
function itersections() to find and extract the Section with name “Electrode 011” from the odML
file. In the second step, he uses the odML helper function iterproperties() not on the entire odML
file (odml of recordingXX), but on the extracted Section “Electrode 011” in combination with a filter
function for finding the Property “SUAIDs”.

Bob can also make use of the ambiguity of the odML Property name “SUAIDs” to collect the number
of SUA IDs identified for all electrodes of the Utah array, which gives an idea about the quality of the
spike detection and the spike sorting (see Listing S-5). Therefore he would combine the odML helper
function iterproperties() with a filter function that only checks if the odML Property name equals
“SUAIDs” and counts, based on the resulting lists of odML Properties with name “SUAIDs”, how many
odML Values contain metadata matching SUA IDs.

2.3 Navigating across odML files

In the previous subsection we demonstrated how to locate and access specific metadata in a given odML
hierarchy. Here, we will illustrate how to apply this mechanism across odML files.

Let us assume that Bob defined his iter and filter function to find out whether a given recording session is
spike sorted (see Listing S-6). He also extracted a list of all odML file names and knows that they match the
names of the corresponding data files. He loops over all odML files and extracts for each if the session was
spike sorted. If so, he appends the corresponding filename automatically to the list of spike sorted sessions.

If Bob has more than one criterion to be used for selecting sessions or even data from sessions, such
as in use case 3, it is helpful to combine all checks based on the iterproperties() function in a
single criterion function for increased clarity. Based on the code examples in Listing S-2 and Listing S-5,
Bob may create a criterion function which checks if a session was spike sorted and if so, if the number of
identified single units was larger than 60 (Listing S-7).

2.4 Integration of additional metadata

Additional preprocessing steps (e.g. spike sorting or quality assessment) as described in Section 1 and
use case 1 (Section 3.1 of the main text) are often performed over a time period of months after the actual
recording which is typical for a workflow of an electrophysiological experiment. Along use case 1 we
will now illustrate different scenarios of how metadata of such preprocessing procedures can be gradually
integrated into an existing odML file.

In a first scenario, the preprocessing step is expected and known in advance (e.g. spike sorting). Here,
the odML structure can be planned ahead with default dummy metadata Values in the form of an odML
template. In this case it is possible to replace the dummy Values in the odML structure by the upcoming
actual metadata Values of the preprocessing step.

Alternatively, the preprocessing step may not be expected, for example, if its importance arises only
after performing preliminary analyses of the data. Indeed, the ideal odML structure for metadata may only
become clear during development of a new preprocessing step and needs to be integrated into existing
odML files later on. In such a case one should update the original odML template structure with the

6

Zehl et al. Supplementary Material

new preprocessing structure and rerun the generation of all odML files to keep overall consistency and
reproducibility.

2.5 odML access via MATLAB

In use case 5 we discussed a situation where two scientists (Alice and Carol) from different labs decide
to work together even though they use different programming languages for data analysis (MATLAB and
Python, respectively). The question arises how both scientists can use odML without abandoning their
preferred programming language. Indeed, odML libraries exist not only for Python but also for MATLAB
and Java. As MATLAB is often used in experimental neurophysiological laboratories, we illustrate here
how the previously stated Python code examples can be translated into MATLAB.

The current version of the MATLAB odML library provides an API that differs from the python-odml
library. In particular the MATLAB API is limited to load data from odML files but not to write to odML files,
and the flexible iterproperties() is replaced by a comparable, but more limited, helper function
called odml find().

When using the MATLAB odML library (https://github.com/G-Node/matlab-odml), the odML data are
stored in MATLAB structure arrays, making handling of the data convenient and familiar for MATLAB
users. It must be noted that the odml load() loading function provides an option to choose between two
possible ways of mapping the odML data to the fields of the structure array. Using the default ’tree’ option,
the fields of the structure array are directly named after the names of the Sections and Properties defined
in the odML file, as illustrated in Listing S-8. Using the ’odml’ option, the odML data are loaded in the
structure array following more closely the odML object model, as illustrated in Listing S-9.

As it can be inferred by comparing the code in Listing S-8 and Listing S-9, using one option or the
other is more suitable depending of the type of processing that will be performed on the metadata.
For example, when the user knows the odML hierarchy and wants to access directly a given Property,
the option ’tree’ leads to more explicit naming in the structure array fields which makes writing
and reading of the code more convenient (compare rootSection.Subject.Weight.value and
rootSection.section(1).property(2).value(1).value from Listing S-8 and Listing S-
9, respectively). For some more advanced processing, in particular when looping over metadata structures,
or when the number of Values or Properties or Sections is unknown, the ’odml’ option can be more suitable.
A more detailed discussion about the two loading options can be found in the help of the odml load()
function.

The odml find() function searches an odML tree for the Section or Property object with a given
name (object = odml find(odml tree, object name)) or all sections and property objects
with the given name (object list = odml find(odml tree, object name, Inf)). It can
be used to build the MATLAB code equivalent to the Python code that we gave in our previous examples.

In the simple case where the requested object is uniquely represented in the odML file, as it is the case in
our first code example in which Bob wants to find out if a particular recording session was spike sorted
(Listing S-2), the MATLAB code is straight-forward (Listing S-10).

In the more complex situation where the requested object is not uniquely represented in the odML file, as
in our second code example in which Bob wants to know the SUA IDs of the electrode with ID 11, we
need to extract first the unique identifiable electrode Section “Electrode 011” and then use the resulting
Section object in the odml find() function to access the metadata of Property “SUAIDs” (Listing S-11).
This approach is not as flexible as the Python code using the combination of iterproperties() with

Frontiers 7

https://github.com/G-Node/matlab-odml

Zehl et al. Supplementary Material

complex filter functions as demonstrated in Listing S-3, but it is very similar to the approach in Listing S-4
and still powerful enough to access any metadata within the odML file with little detail knowledge on the
odML file structure.

Finally, as illustrated in listing Listing S-12, we can also make use of the odml find() function to find
a list of Properties with ambiguous names. For example, we may wish to collect the number of SUAIDs
identified for all electrodes of the Utah array, as we did in the code example in Listing S-5.

REFERENCES

Riehle, A., Wirtssohn, S., Grün, S., and Brochier, T. (2013). Mapping the spatio-temporal structure of
motor cortical LFP and spiking activities during reach-to-grasp movements. Front Neural Circuits 7, 48.
doi:10.3389/fncir.2013.00048

8

Zehl et al. Supplementary Material

3 SUPPLEMENTARY TABLES AND FIGURES

odML - Metadata

Document info

Author: Bob

Date:

Version:

Repository:

Structure

Subject (type: subject)

ArrayImplant (type: subject/preparation)

Content

Section: Subject

Type: subject

Id:

Repository:

Link:

Include:

De�nition:Information on the investigated experimental subject (animal or person)

Mapping:

Name Value Uncertainty Unit value

id

Type Comment De nition

Species Macaca mullata string Binomial species name (genus, species

within genus)

top

Section: ArrayImplant

Type: subject/preparation

Id:

Repository:

Link:

Include:

De�nition:Information on the array implant performed on subject

Mapping:

Name Value Uncertainty Unit value

id

Type Comment De nition

Date 2011-09-30 date Date of the surgery

top

Figure S-1. HTML view of an odML file. The displayed odML document Subject Demo.odml is schematically displayed in Figure 5, its corresponding Python
implementation is shown in Figure 8, and the XML-based representation is demonstrated in Listing S-1.

Frontiers 9

Zehl et al. Supplementary Material

Figure S-2. odML Editor view of an odML file. The displayed odML document Subject Demo.odml is schematically displayed in Figure 5, its corresponding
Python implementation is shown in Figure 8, and the XML-based representation is demonstrated in Listing S-1. Note that the ’Subject’ section was selected
(marked in orange in the sections pane). The corresponding properties of the selected section (’Species’ and ’Weight’) are displayed in the properties pane.

10

Zehl et al. Supplementary Material

Listing S-1. XML-based representation of an odML file. XML-based representation of the odML Document Subject Demo.odml which is schematically
displayed in Figure 5. The corresponding Python code is shown in Figure 8.

Frontiers 11

Zehl et al. Supplementary Material

Listing S-2. Extract unique objects from an odML file in Python. Python code for extracting an odML object with a unique name. The example demonstrates
how one makes use of a filter function for the object name (“IsSpikeSorted”) in combination with the object corresponding Python odML function
iterproperties().

12

Zehl et al. Supplementary Material

Listing S-3. Extract ambiguous objects from an odML file in Python via search conditions. Python code for extracting an odML object with an ambiguous
name by extending the conditions given in the filter function.

Frontiers 13

Zehl et al. Supplementary Material

Listing S-4. Extract ambiguous objects from an odML file in Python via partial searches. Python code for extracting an odML object with an ambiguous name
by narrowing down the search to a smaller part of the odML document.

14

Zehl et al. Supplementary Material

Listing S-5. Extract all ambiguous objects from an odML file in Python. Python code for extracting a list of related odML objects with ambiguous names.

Frontiers 15

Zehl et al. Supplementary Material

Listing S-6. Extract a specific object from an odML file in Python used in a data selection. Python code to generate a list of filenames of spike sorted recording
sessions.

16

Zehl et al. Supplementary Material

Listing S-7. Extract multiple objects from an odML file in Python used in a data selection. Python code that uses a criterion function to generate a list of
filenames of spike sorted recording sessions which contain at least 60 identified units.

Frontiers 17

Zehl et al. Supplementary Material

✞
1 odml_config;

2
3 % load the test odML file with the default ’tree ’ option

4 rootSection = odml_load (’example_odML.odml ’);

5
6 % access the value of the weight of the subject

7 weight = rootSection.Subject .Weight .value;✝ ✆
Listing S-8. odML in MATLAB - ’tree’ option. MATLAB code for accessing a specific metadata value when using the default ’tree’ loading option. The
content of the file ’listing2.odml’ is given in Figure 5.

✞
1 odml_config;

2
3 % load the test odML file with the ’odml ’ option

4 rootSection = odml_load (’example_odML.odml ’, ’odml ’);

5
6 % access the value of the weight of the subject

7 weight = rootSection.section (1).property (2).value (1).value;✝ ✆
Listing S-9. odML in MATLAB - ’odml’ option. MATLAB code for accessing a specific metadata value when using the ’odml’ loading option. The content of
the file ’listing2.odml’ is given in Figure 5.

Listing S-10. Extract unique objects from an odML file in MATLAB. MATLAB code for extracting an odML object with a unique name.

18

Zehl et al. Supplementary Material

Listing S-11. Extract ambiguous objects from an odML file in MATLAB. MATLAB code for extracting an odML object with an ambiguous name.

Listing S-12. Extract all ambiguous objects from an odML file in MATLAB. MATLAB code for extracting a list of related odML objects with ambiguous
names.

Frontiers 19

	Handling Metadata in a Neurophysiology Laboratory
	1. Introduction
	2. Organizing Metadata in Neurophysiology
	3. Advantage of a Comprehensive Metadata Collection: Use Cases
	3.1. Use Case 1: Enrichment of the Metadata Collection
	3.2. Use Case 2: Metadata Accessibility
	3.3. Use Case 3: Selection of Datasets
	3.4. Use Case 4: Metadata Screening
	3.5. Use Case 5: Metadata Queries for Data Selection

	4. Guidelines for Creating a Comprehensive Metadata Collection
	4.1. The odML Metadata Model
	4.2. Metadata Strategy: Distribution of Information
	4.3. Metadata Strategy: Structuring Information
	4.4. Metadata Strategy: Workflow

	5. Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	presentation 1.pdf
	A complex neurophysiological experiment
	The task
	The pre-recording period
	The recording period
	The recording procedure and main preprocessing steps
	Summary of metadata sources

	Using an odML metadata collection
	Manual inspection
	Navigating the odML structure
	Navigating across odML files
	Integration of additional metadata
	odML access via MATLAB

	Supplementary Tables and Figures

