A. Woehrer, L. Bauchet, and J. S. Barnholtz-sloan, Glioblastoma survival, Current Opinion in Neurology, vol.27, pp.666-674, 2014.
DOI : 10.1097/WCO.0000000000000144

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

P. Friedl and S. Alexander, Cancer Invasion and the Microenvironment: Plasticity and Reciprocity, Cell, vol.147, issue.5, pp.992-1009, 2011.
DOI : 10.1016/j.cell.2011.11.016

URL : http://doi.org/10.1016/j.cell.2011.11.016

R. Glass and M. Synowitz, CNS macrophages and peripheral myeloid cells in brain tumours, Acta Neuropathologica, vol.184, issue.1???2, pp.347-362, 2014.
DOI : 10.1007/s00401-014-1274-2

N. A. Charles, E. C. Holland, R. Gilbertson, R. Glass, and H. Kettenmann, The brain tumor microenvironment, Glia, vol.162, issue.3, pp.502-514, 2012.
DOI : 10.1002/glia.21264

S. S. Ousman and P. Kubes, Immune surveillance in the central nervous system, Nature Neuroscience, vol.14, issue.8, pp.1096-1101, 2012.
DOI : 10.1084/jem.20070885

G. P. Dunn and H. Okada, Principles of immunology and its nuances in the central nervous system: Fig. 1., Neuro-Oncology, vol.17, issue.suppl 7, pp.3-8, 2015.
DOI : 10.1093/neuonc/nov175

F. Ginhoux, Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages, Science, vol.330, issue.6005, pp.841-845, 2010.
DOI : 10.1126/science.1194637

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719181

F. Ginhoux, S. Lim, G. Hoeffel, D. Low, and T. Huber, Origin and differentiation of microglia, Frontiers in Cellular Neuroscience, vol.7, p.45, 2013.
DOI : 10.3389/fncel.2013.00045

A. Wlodarczyk, M. Lobner, O. Cedile, and T. Owens, Comparison of microglia and infiltrating CD11c+ cells as antigen presenting cells for T cell proliferation and cytokine response, Journal of Neuroinflammation, vol.11, issue.1, 2014.
DOI : 10.1084/jem.20120696

D. Agostino, P. M. Gottfried-blackmore, A. Anandasabapathy, N. Bulloch, and K. , Brain dendritic cells: biology and pathology, Acta Neuropathologica, vol.29, issue.1, pp.599-614, 2012.
DOI : 10.1007/s00401-012-1018-0

W. F. Hickey and H. Kimura, Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo, Science, vol.239, issue.4837, pp.290-292, 1988.
DOI : 10.1126/science.3276004

W. Li and M. B. Graeber, The molecular profile of microglia under the influence of glioma, Neuro-Oncology, vol.14, issue.8, pp.958-978, 2012.
DOI : 10.1093/neuonc/nos116

S. Tamoutounour, Origins and Functional Specialization of Macrophages and of Conventional and Monocyte-Derived Dendritic Cells in Mouse Skin, Immunity, vol.39, issue.5, pp.925-938, 2013.
DOI : 10.1016/j.immuni.2013.10.004

A. Mildner, Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions, Nature Neuroscience, vol.72, issue.12, pp.1544-1553, 2007.
DOI : 10.1038/nn2015

B. Ajami, J. L. Bennett, C. Krieger, W. Tetzlaff, and F. M. Rossi, Local self-renewal can sustain CNS microglia maintenance and function throughout adult life, Nature Neuroscience, vol.125, issue.12, pp.1538-1543, 2007.
DOI : 10.1038/nn2014

B. Ajami, J. L. Bennett, C. Krieger, K. M. Mcnagny, and F. M. Rossi, Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool, Nature Neuroscience, vol.353, issue.9, pp.1142-1149, 2011.
DOI : 10.1038/nn.2887

R. M. Ransohoff, Microgliosis: the questions shape the answers, Nature Neuroscience, vol.117, issue.12, pp.1507-1509, 2007.
DOI : 10.1038/nn1207-1507

P. Bousso and H. D. Moreau, Functional immunoimaging: the revolution continues, Nature Reviews Immunology, vol.19, issue.12, pp.858-864, 2012.
DOI : 10.1038/nri3342

N. Faust, F. Varas, L. M. Kelly, S. Heck, and T. Graf, Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages, Blood, vol.96, pp.719-726, 2000.

R. L. Lindquist, Visualizing dendritic cell networks in vivo, Nature Immunology, vol.7, issue.12, pp.1243-1250, 2004.
DOI : 10.1186/1472-6750-2-11

P. C. Huszthy, In vivo models of primary brain tumors: pitfalls and perspectives, Neuro-Oncology, vol.14, issue.8, pp.979-993, 2012.
DOI : 10.1093/neuonc/nos135

C. Ricard, F. Stanchi, G. Rougon, and F. Debarbieux, An Orthotopic Glioblastoma Mouse Model Maintaining Brain Parenchymal Physical Constraints and Suitable for Intravital Two-photon Microscopy, Journal of Visualized Experiments, vol.86, issue.86, pp.10-3791, 2014.
DOI : 10.3791/51108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174722

B. H. Clausen, Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice, Journal of Neuroinflammation, vol.5, issue.1, p.46, 2008.
DOI : 10.1186/1742-2094-5-46

J. Herz, K. R. Johnson, and D. B. Mcgavern, Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells, The Journal of Experimental Medicine, vol.153, issue.8, pp.1153-1169, 2015.
DOI : 10.1084/jem.20121416

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516789

S. F. Hussain, The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses, Neuro-Oncology, vol.8, issue.3, pp.261-279, 2006.
DOI : 10.1215/15228517-2006-008

K. Crozat, Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets, Immunological Reviews, vol.10, issue.1, pp.177-198, 2010.
DOI : 10.1111/j.0105-2896.2009.00868.x

URL : https://hal.archives-ouvertes.fr/hal-00502980

C. Ricard and F. Debarbieux, Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment, Frontiers in Cellular Neuroscience, vol.8, p.57, 2014.
DOI : 10.3389/fncel.2014.00057

I. Yang, S. J. Han, G. Kaur, C. Crane, and A. Parsa, The role of microglia in central nervous system immunity and glioma immunology, Journal of Clinical Neuroscience, vol.17, issue.1, pp.6-10, 2010.
DOI : 10.1016/j.jocn.2009.05.006

C. T. Tran, Differential expression of MHC class II molecules by microglia and neoplastic astroglia: relevance for the escape of astrocytoma cells from immune surveillance, Neuropathology and Applied Neurobiology, vol.76, issue.4, pp.293-301, 1998.
DOI : 10.1007/s004010050520

S. Gurka, E. Hartung, M. Becker, and R. A. Kroczek, Mouse Conventional Dendritic Cells Can be Universally Classified Based on the Mutually Exclusive Expression of XCR1 and SIRPalpha, Front Immunol, vol.6, p.35, 2015.

M. L. Broz, Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-Presenting Cells Critical for T Cell Immunity, Cancer Cell, vol.26, issue.5, pp.638-652, 2014.
DOI : 10.1016/j.ccell.2014.09.007

A. Louveau, Structural and functional features of central nervous system lymphatic vessels, Nature, vol.14, issue.7560, pp.337-341, 2015.
DOI : 10.1038/nature14432

R. Shechter, Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus, Immunity, vol.38, issue.3, pp.555-569, 2013.
DOI : 10.1016/j.immuni.2013.02.012

A. D. Gregory and A. M. Houghton, Tumor-Associated Neutrophils: New Targets for Cancer Therapy, Cancer Research, vol.71, issue.7, pp.2411-2416, 2011.
DOI : 10.1158/0008-5472.CAN-10-2583

R. D. Stout and J. Suttles, Functional plasticity of macrophages: reversible adaptation to changing microenvironments, Journal of Leukocyte Biology, vol.76, issue.3, pp.509-513, 2004.
DOI : 10.1189/jlb.0504272

E. Schouppe, P. De-baetselier, J. Van-ginderachter, and A. Sarukhan, Instruction of myeloid cells by the tumor microenvironment: Open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations, OncoImmunology, vol.7, issue.7, pp.1135-1145, 2012.
DOI : 10.4161/onci.21566

N. Caronni, B. Savino, and R. Bonecchi, Myeloid cells in cancer-related inflammation, Immunobiology, vol.220, issue.2, pp.249-253, 2015.
DOI : 10.1016/j.imbio.2014.10.001

J. Youn, S. Nagaraj, M. Collazo, and D. I. Gabrilovich, Subsets of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice, The Journal of Immunology, vol.181, issue.8, pp.5791-5802, 2008.
DOI : 10.4049/jimmunol.181.8.5791

M. C. Schmid and J. A. Varner, Myeloid Cells in the Tumor Microenvironment: Modulation of Tumor Angiogenesis and Tumor Inflammation, Journal of Oncology, vol.87, issue.8, p.201026, 2010.
DOI : 10.1038/nature04483

S. V. Kushchayev, Monocyte-Derived Cells of the Brain and Malignant Gliomas: The Double Face of Janus, World Neurosurgery, vol.82, issue.6, pp.1171-1186, 2014.
DOI : 10.1016/j.wneu.2012.11.059

D. Dal-secco, monocytes at a site of sterile injury, The Journal of Experimental Medicine, vol.212, issue.4, pp.447-456, 2015.
DOI : 10.1172/JCI119468

L. M. Gazdzinski and B. J. Nieman, Cellular imaging and texture analysis distinguish differences in cellular dynamics in mouse brain tumors. Magnetic resonance in medicine 71, pp.1531-154124790, 2014.

G. Feng, Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP, Neuron, vol.28, issue.1, pp.41-51, 2000.
DOI : 10.1016/S0896-6273(00)00084-2

C. Ricard, Dynamic Quantitative Intravital Imaging of Glioblastoma Progression Reveals a Lack of Correlation between Tumor Growth and Blood Vessel Density, PLoS ONE, vol.71, issue.9, p.72655, 2013.
DOI : 10.1371/journal.pone.0072655.s007

URL : https://hal.archives-ouvertes.fr/hal-01135040

E. Meijering, O. Dzyubachyk, and I. Smal, Methods for Cell and Particle Tracking, Methods Enzymol, vol.504, pp.183-200, 2012.
DOI : 10.1016/B978-0-12-391857-4.00009-4