S. Maurer, P. Bieling, J. Cope, A. Hoenger, and T. Surrey, GTP??S microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs), Proceedings of the National Academy of Sciences, vol.108, issue.10, pp.3988-3993, 2011.
DOI : 10.1073/pnas.1014758108

S. Maurer, F. Fourniol, G. Bohner, C. Moores, and T. Surrey, EBs Recognize a Nucleotide-Dependent Structural Cap at Growing Microtubule Ends, Cell, vol.149, issue.2, pp.371-382, 2012.
DOI : 10.1016/j.cell.2012.02.049

URL : http://doi.org/10.1016/j.cell.2012.02.049

T. Mitchison and M. Kirschner, Microtubule assembly nucleated by isolated centrosomes, Nature, vol.72, issue.5991, pp.232-237, 1984.
DOI : 10.1038/312232a0

M. Mukrasch, S. Bibow, J. Korukottu, S. Jeganathan, J. Biernat et al., Structural Polymorphism of 441-Residue Tau at Single Residue Resolution, PLoS Biology, vol.25, issue.2, p.34, 2009.
DOI : 10.1371/journal.pbio.1000034.sg004

M. Mukrasch, M. Von-bergen, J. Biernat, D. Fischer, C. Griesinger et al., The "Jaws" of the Tau-Microtubule Interaction, Journal of Biological Chemistry, vol.282, issue.16, pp.12230-12239, 2007.
DOI : 10.1074/jbc.M607159200

D. Panda, J. Daijo, M. Jordan, and L. Wilson, Kinetic Stabilization of Microtubule Dynamics at Steady State in Vitro by Substoichiometric Concentrations of Tubulin-Colchicine Complex, Biochemistry, vol.34, issue.31, pp.9921-9929, 1995.
DOI : 10.1021/bi00031a014

D. Panda, J. Samuel, M. Massie, S. Feinstein, and L. Wilson, Differential regulation of microtubule dynamics by three- and four-repeat tau: Implications for the onset of neurodegenerative disease, Proceedings of the National Academy of Sciences, vol.100, issue.16, pp.9548-9553, 2003.
DOI : 10.1073/pnas.1633508100

C. Sayas and J. Avila, Regulation of EB1/3 proteins by classical MAPs in neurons, BioArchitecture, vol.12, issue.1, pp.1-5, 2014.
DOI : 10.1038/sj.emboj.7600529

C. Sayas, E. Tortosa, F. Bollati, S. Ramirez-rios, I. Arnal et al., Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells, Journal of Neurochemistry, vol.111, issue.Pt 10, pp.653-667, 2015.
DOI : 10.1111/jnc.13091

C. Schneider, W. Rasband, and K. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.1038/nmeth.2089

P. Seubert, M. Mawal-dewan, R. Barbour, R. Jakes, M. Goedert et al., Detection of phosphorylated Ser262 in fetal tau, adult tau, and paired helical filament tau, J Biol Chem, vol.270, pp.18917-18922, 1995.

S. Skube, J. Chaverri, and H. Goodson, Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo, Cytoskeleton, vol.121, issue.Part 14, pp.1-12, 2010.
DOI : 10.1002/cm.20409

K. Slep, S. Rogers, S. Elliott, H. Ohkura, P. Kolodziej et al., Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end, The Journal of Cell Biology, vol.114, issue.4, pp.587-598, 2005.
DOI : 10.1016/j.neuron.2004.05.011

E. Tortosa, N. Galjart, J. Avila, and C. Sayas, MAP1B regulates microtubule dynamics by sequestering EB1/3 in the cytosol of developing neuronal cells, The EMBO Journal, vol.12, issue.9, pp.1293-1306, 2013.
DOI : 10.1083/jcb.200901036

B. Trinczek, J. Biernat, K. Baumann, E. Mandelkow, and E. Mandelkow, Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules., Molecular Biology of the Cell, vol.6, issue.12, pp.1887-1902, 1995.
DOI : 10.1091/mbc.6.12.1887

L. Velot, A. Molina, S. Rodrigues-ferreira, A. Nehlig, B. Bouchet et al., Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3, Oncotarget, vol.6, pp.43557-43570, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01223890

B. Vitre, F. Coquelle, C. Heichette, C. Garnier, D. Chretien et al., EB1 regulates microtubule dynamics and tubulin sheet closure in vitro, Nature Cell Biology, vol.260, issue.4, pp.415-421, 2008.
DOI : 10.1006/jmbi.2000.3696

URL : https://hal.archives-ouvertes.fr/hal-00274450

R. Walker, O. Brien, E. Pryer, N. Soboeiro, M. Voter et al., Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies, The Journal of Cell Biology, vol.107, issue.4, pp.1437-1448, 1988.
DOI : 10.1083/jcb.107.4.1437

J. Wehland and M. Willingham, A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. II. Effects on cell movement, organization of microtubules, and intermediate filaments, and arrangement of Golgi elements, The Journal of Cell Biology, vol.97, issue.5, pp.1476-1490, 1983.
DOI : 10.1083/jcb.97.5.1476

M. Zanic, J. Stear, A. Hyman, and J. Howard, EB1 Recognizes the Nucleotide State of Tubulin in the Microtubule Lattice, PLoS ONE, vol.4, issue.10, p.7585, 2009.
DOI : 10.1371/journal.pone.0007585.s003

M. Zanic, P. Widlund, A. Hyman, and J. Howard, Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels, Nature Cell Biology, vol.339, issue.6, pp.688-693, 2013.
DOI : 10.1038/ncb2744

R. Zhang, G. Alushin, A. Brown, and E. Nogales, Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins, Cell, vol.162, issue.4, pp.849-859, 2015.
DOI : 10.1016/j.cell.2015.07.012

T. Zimniak, K. Stengl, K. Mechtler, and S. Westermann, Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p, The Journal of Cell Biology, vol.6, issue.3, pp.379-391, 2009.
DOI : 10.1091/mbc.E07-06-0536

M. Ackmann, H. Wiech, and E. Mandelkow, Nonsaturable Binding Indicates Clustering of Tau on the Microtubule Surface in a Paired Helical Filament-like Conformation, Journal of Biological Chemistry, vol.275, issue.39, pp.30335-30343, 2000.
DOI : 10.1074/jbc.M002590200

A. Akhmanova and M. Steinmetz, Microtubule +TIPs at a glance, Journal of Cell Science, vol.123, issue.20, pp.3415-3419, 2010.
DOI : 10.1242/jcs.062414

URL : http://jcs.biologists.org/cgi/content/short/123/20/3415

A. Alonso, D. Clerico, J. Li, B. Corbo, C. Alaniz et al., Phosphorylation of Tau at Thr212, Thr231, and Ser262 Combined Causes Neurodegeneration, Journal of Biological Chemistry, vol.285, issue.40, pp.30851-30860, 2010.
DOI : 10.1074/jbc.M110.110957

L. Amos and D. Schlieper, Microtubules and Maps, Adv Protein Chem, vol.71, pp.257-298, 2005.
DOI : 10.1016/S0065-3233(04)71007-4

P. Bieling, L. Laan, H. Schek, E. Munteanu, L. Sandblad et al., Reconstitution of a microtubule plus-end tracking system in vitro, Nature, vol.77, issue.7172, pp.1100-1105, 2007.
DOI : 10.1038/nature06386

L. Buee, T. Bussiere, V. Buee-scherrer, A. Delacourte, and P. Hof, Tau protein isoforms, phosphorylation and role in neurodegenerative disorders11These authors contributed equally to this work., Brain Research Reviews, vol.33, issue.1, pp.95-130, 2000.
DOI : 10.1016/S0165-0173(00)00019-9

R. Buey, R. Mohan, K. Leslie, T. Walzthoeni, J. Missimer et al., Insights into EB1 structure and the role of its C-terminal domain for discriminating microtubule tips from the lattice, Molecular Biology of the Cell, vol.22, issue.16, pp.2912-2923, 2011.
DOI : 10.1091/mbc.E11-01-0017

D. Groot, C. Jelesarov, I. Damberger, F. Bjelic, S. Scharer et al., Molecular Insights into Mammalian End-binding Protein Heterodimerization, Journal of Biological Chemistry, vol.285, issue.8, pp.5802-5814, 2010.
DOI : 10.1074/jbc.M109.068130

A. Desai and T. Mitchison, MICROTUBULE POLYMERIZATION DYNAMICS, Annual Review of Cell and Developmental Biology, vol.13, issue.1, pp.83-117, 1997.
DOI : 10.1146/annurev.cellbio.13.1.83

F. Devred, S. Douillard, C. Briand, and V. Peyrot, First tau repeat domain binding to growing and taxol-stabilized microtubules, and serine 262 residue phosphorylation, FEBS Letters, vol.16, issue.1-3, pp.247-251, 2002.
DOI : 10.1016/S0014-5793(02)02999-X

A. Elie, E. Prezel, C. Guerin, E. Denarier, S. Ramirez-rios et al., Tau co-organizes dynamic microtubule and actin networks, Scientific Reports, vol.9, issue.1, p.9964, 2015.
DOI : 10.1038/nmeth.2089

URL : https://hal.archives-ouvertes.fr/hal-01166807

N. Galjart, Plus-End-Tracking Proteins and Their Interactions at Microtubule Ends, Current Biology, vol.20, issue.12, pp.528-537, 2010.
DOI : 10.1016/j.cub.2010.05.022

URL : http://doi.org/10.1016/j.cub.2010.05.022

I. Hayashi and M. Ikura, Crystal Structure of the Amino-terminal Microtubule-binding Domain of End-binding Protein 1 (EB1), Journal of Biological Chemistry, vol.278, issue.38, pp.36430-36434, 2003.
DOI : 10.1074/jbc.M305773200

S. Honnappa, S. Gouveia, A. Weisbrich, F. Damberger, N. Bhavesh et al., An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal, Cell, vol.138, issue.2, pp.366-376, 2009.
DOI : 10.1016/j.cell.2009.04.065

S. Honnappa, C. John, D. Kostrewa, F. Winkler, and M. Steinmetz, Structural insights into the EB1?APC interaction, The EMBO Journal, vol.6, issue.2, pp.261-269, 2005.
DOI : 10.1038/sj.emboj.7600529

A. Hyman, D. Drechsel, D. Kellogg, S. Salser, K. Sawin et al., [39] Preparation of modified tubulins, Methods Enzymol, vol.196, pp.478-485, 1991.
DOI : 10.1016/0076-6879(91)96041-O

D. Janning, M. Igaev, F. Sundermann, J. Bruhmann, O. Beutel et al., Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons, Molecular Biology of the Cell, vol.25, issue.22, pp.3541-3551, 2014.
DOI : 10.1091/mbc.E14-06-1099

L. Kapitein, K. Yau, S. Gouveia, W. Van-der-zwan, P. Wulf et al., NMDA Receptor Activation Suppresses Microtubule Growth and Spine Entry, Journal of Neuroscience, vol.31, issue.22, pp.8194-8209, 2011.
DOI : 10.1523/JNEUROSCI.6215-10.2011

E. Kiris, D. Ventimiglia, M. Sargin, M. Gaylord, A. Altinok et al., Combinatorial Tau Pseudophosphorylation: MARKEDLY DIFFERENT REGULATORY EFFECTS ON MICROTUBULE ASSEMBLY AND DYNAMIC INSTABILITY THAN THE SUM OF THE INDIVIDUAL PARTS, Journal of Biological Chemistry, vol.286, issue.16, pp.14257-14270, 2011.
DOI : 10.1074/jbc.M111.219311