R. Stupp, W. Mason, M. Van-den-bent, M. Weller, B. Fisher et al., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-996, 2005.
DOI : 10.1056/NEJMoa043330

H. Fine, Bevacizumab in Glioblastoma ??? Still Much to Learn, New England Journal of Medicine, vol.370, issue.8, pp.764-765, 2014.
DOI : 10.1056/NEJMe1313309

O. Chinot, W. Wick, W. Mason, R. Henriksson, F. Saran et al., Bevacizumab plus Radiotherapy???Temozolomide for Newly Diagnosed Glioblastoma, New England Journal of Medicine, vol.370, issue.8, pp.709-722, 2014.
DOI : 10.1056/NEJMoa1308345

URL : http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-89503

M. Karsy, T. Huang, G. Kleinman, and G. Karpel-massler, Molecular, histopathological, and genomic variants of glioblastoma, Frontiers in Bioscience, vol.19, issue.7, pp.1065-1087, 2014.
DOI : 10.2741/4268

N. Goffart, J. Kroonen, and B. Rogister, Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment, Cancers, vol.5, issue.3, pp.1049-1071, 2013.
DOI : 10.3390/cancers5031049

H. Phillips, S. Kharbanda, R. Chen, W. Forrest, R. Soriano et al., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis, Cancer Cell, vol.9, issue.3, pp.157-173, 2006.
DOI : 10.1016/j.ccr.2006.02.019

. Cancer and G. Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways, Nature, vol.455, pp.1061-1068, 2008.

R. Verhaak, K. Hoadley, E. Purdom, V. Wang, Y. Qi et al., Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell, vol.17, issue.1, pp.98-110, 2010.
DOI : 10.1016/j.ccr.2009.12.020

C. Brennan, R. Verhaak, A. Mckenna, B. Campos, H. Noushmehr et al., The Somatic Genomic Landscape of Glioblastoma, Cell, vol.155, issue.2, pp.462-477, 2013.
DOI : 10.1016/j.cell.2013.09.034

D. Sturm, H. Witt, V. Hovestadt, D. Khuong-quang, D. Jones et al., Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma, Cancer Cell, vol.22, issue.4, pp.425-437, 2012.
DOI : 10.1016/j.ccr.2012.08.024

R. Galli, E. Binda, U. Orfanelli, B. Cipelletti, A. Gritti et al., Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma, Cancer Research, vol.64, issue.19, pp.7011-7021, 2004.
DOI : 10.1158/0008-5472.CAN-04-1364

H. Zaidi, T. Kosztowski, F. Dimeco, and A. Quiñones-hinojosa, Origins and clinical implications of the brain tumor stem cell hypothesis, Journal of Neuro-Oncology, vol.3, issue.1, pp.49-60, 2009.
DOI : 10.1007/s11060-009-9856-x

D. Beier, P. Hau, M. Proescholdt, A. Lohmeier, J. Wischhusen et al., CD133+ and CD133- Glioblastoma-Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles, Cancer Research, vol.67, issue.9, pp.4010-4015, 2007.
DOI : 10.1158/0008-5472.CAN-06-4180

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.477.883

A. Tchoghandjian, N. Baeza, C. Colin, M. Cayre, P. Metellus et al., A2B5 Cells from Human Glioblastoma have Cancer Stem Cell Properties, Brain Pathology, vol.4, issue.1, pp.211-221, 2010.
DOI : 10.1111/j.1750-3639.2009.00269.x

URL : https://hal.archives-ouvertes.fr/hal-00566242

M. Son, K. Woolard, D. Nam, J. Lee, and H. Fine, SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma, Cell Stem Cell, vol.4, issue.5, pp.440-452, 2009.
DOI : 10.1016/j.stem.2009.03.003

I. Dimov, D. Tasi?-dimov, I. Coni?, and V. Stefanovic, Glioblastoma Multiforme Stem Cells, The Scientific World JOURNAL, vol.11, pp.930-958, 2011.
DOI : 10.1100/tsw.2011.42

URL : http://doi.org/10.1100/tsw.2011.42

R. Dahlrot, S. Hermansen, S. Hansen, and B. Kristensen, What is the clinical value of cancer stem cell markers in gliomas, Int J Clin Exp Pathol, vol.6, pp.334-348, 2013.

H. Günther, N. Schmidt, H. Phillips, D. Kemming, S. Kharbanda et al., Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria, Oncogene, vol.63, issue.20, pp.2897-2909, 2008.
DOI : 10.1038/sj.cr.7310104

S. Pollard, K. Yoshikawa, I. Clarke, D. Danovi, S. Stricker et al., Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens, Cell Stem Cell, vol.4, issue.6, pp.568-580, 2009.
DOI : 10.1016/j.stem.2009.03.014

A. Tchoghandjian, N. Baeza-kallee, C. Beclin, P. Metellus, C. Colin et al., Cortical and Subventricular Zone Glioblastoma-Derived Stem-Like Cells Display Different Molecular Profiles and Differential In Vitro and In Vivo Properties, Annals of Surgical Oncology, vol.70, issue.5, pp.608-619, 2012.
DOI : 10.1245/s10434-011-2093-5

URL : https://hal.archives-ouvertes.fr/hal-00839131

K. Joo, S. Kim, J. X. Song, S. Kong, D. Lee et al., Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas, Laboratory Investigation, vol.55, issue.8, pp.808-815, 2008.
DOI : 10.1186/1476-4598-5-67

D. Gutman, L. Cooper, S. Hwang, C. Holder, J. Gao et al., MR Imaging Predictors of Molecular Profile and Survival: Multi-institutional Study of the TCGA Glioblastoma Data Set, Radiology, vol.267, issue.2, pp.560-569, 2013.
DOI : 10.1148/radiol.13120118

V. Joukov, K. Pajusola, A. Kaipainen, D. Chilov, I. Lahtinen et al., A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases, Embo J, vol.15, pp.290-298, 1996.

Y. Xu, Z. Zhong, J. Yuan, Z. Zhang, Q. Wei et al., Collaborative overexpression of matrix metalloproteinase-1 and vascular endothelial growth factor-C predicts adverse prognosis in patients with gliomas, Cancer Epidemiology, vol.37, issue.5, pp.697-702, 2013.
DOI : 10.1016/j.canep.2013.06.006

D. Lim, S. Cha, M. Mayo, M. Chen, E. Keles et al., Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype, Neuro-Oncology, vol.9, issue.4, pp.424-429, 2007.
DOI : 10.1215/15228517-2007-023

C. Birchmeier, W. Birchmeier, E. Gherardi, V. Woude, and G. , Met, metastasis, motility and more, Nature Reviews Molecular Cell Biology, vol.4, issue.12, pp.915-925, 2003.
DOI : 10.1038/nrm1261

R. Kageyama, T. Ohtsuka, J. Hatakeyama, and R. Ohsawa, Roles of bHLH genes in neural stem cell differentiation, Experimental Cell Research, vol.306, issue.2, pp.343-348, 2005.
DOI : 10.1016/j.yexcr.2005.03.015

M. Kanamori, T. Kawaguchi, J. Nigro, B. Feuerstein, M. Berger et al., Contribution of Notch signaling activation to human glioblastoma multiforme, Journal of Neurosurgery, vol.106, issue.3, pp.417-427, 2007.
DOI : 10.3171/jns.2007.106.3.417

T. Zhu, M. Costello, C. Talsma, C. Flack, J. Crowley et al., Endothelial Cells Create a Stem Cell Niche in Glioblastoma by Providing NOTCH Ligands That Nurture Self-Renewal of Cancer Stem-Like Cells, Cancer Research, vol.71, issue.18, pp.6061-6072, 2011.
DOI : 10.1158/0008-5472.CAN-10-4269

B. Reynolds and S. Weiss, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science, vol.255, issue.5052, pp.1707-1710, 1992.
DOI : 10.1126/science.1553558

P. Eriksson, E. Perfilieva, T. Björk-eriksson, A. Alborn, C. Nordborg et al., Neurogenesis in the adult human hippocampus, Nature Medicine, vol.92, issue.11, pp.1313-1317, 1998.
DOI : 10.1038/383624a0

T. Walker, A. Wierick, A. Sykes, B. Waldau, D. Corbeil et al., Prominin-1 Allows Prospective Isolation of Neural Stem Cells from the Adult Murine Hippocampus, Journal of Neuroscience, vol.33, issue.7, pp.3010-3024, 2013.
DOI : 10.1523/JNEUROSCI.3363-12.2013

K. Zhang, T. Zhao, X. Huang, L. Wu, K. Wu et al., Notch1 mediates postnatal neurogenesis in hippocampus enhanced by intermittent hypoxia, Neurobiology of Disease, vol.64, pp.66-78, 2014.
DOI : 10.1016/j.nbd.2013.12.010

Z. Zhang, F. Gao, X. Kang, J. Li, L. Zhang et al., Exploring the potential relationship between Notch pathway genes expression and their promoter methylation in mice hippocampal neurogenesis, Brain Research Bulletin, vol.113, pp.8-16, 2015.
DOI : 10.1016/j.brainresbull.2015.02.003

J. Han, C. Calvo, T. Kang, K. Baker, J. Park et al., Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans, Cell Reports, vol.10, issue.7, pp.1158-1172, 2015.
DOI : 10.1016/j.celrep.2015.01.049

URL : https://hal.archives-ouvertes.fr/hal-01213839

M. Inda, R. Bonavia, and J. Seoane, Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature, Cancers, vol.6, issue.1, pp.226-239, 2014.
DOI : 10.3390/cancers6010226

URL : http://doi.org/10.3390/cancers6010226

D. Louis, H. Ohgaki, O. Wiestler, W. Cavenee, P. Burger et al., The 2007 WHO Classification of Tumours of the Central Nervous System, Acta Neuropathologica, vol.64, issue.2, pp.97-109, 2007.
DOI : 10.1007/s00401-007-0243-4

P. Metellus, B. Coulibaly, I. Nanni, F. Fina, N. Eudes et al., -methylguanine-DNA methyltransferase silencing in patients with recurrent glioblastoma multiforme who undergo surgery and carmustine wafer implantation, Cancer, vol.32, issue.20, pp.4783-4794, 2009.
DOI : 10.1002/cncr.24546

URL : https://hal.archives-ouvertes.fr/hal-00617765

B. Coulibaly, I. Nanni, B. Quilichini, J. Gaudart, P. Metellus et al., Epidermal growth factor receptor in glioblastomas: correlation between gene copy number and protein expression, Human Pathology, vol.41, issue.6, pp.815-823, 2010.
DOI : 10.1016/j.humpath.2009.09.020

P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Analytical Biochemistry, vol.162, issue.1, pp.156-159, 1987.
DOI : 10.1016/0003-2697(87)90021-2

M. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Research, vol.29, issue.9, p.45, 2001.
DOI : 10.1093/nar/29.9.e45

A. Moutal, J. Honnorat, P. Massoma, P. Désormeaux, C. Bertrand et al., CRMP5 Controls Glioblastoma Cell Proliferation and Survival through Notch-Dependent Signaling, CRMP5 Controls Glioblastoma Cell Proliferation and Survival through Notch-Dependent Signaling, pp.3519-3528, 2015.
DOI : 10.1158/0008-5472.CAN-14-0631