B. Banfi, G. Molnar, A. Maturana, K. Steger, B. Hegedus et al., A Ca2+-activated NADPH Oxidase in Testis, Spleen, and Lymph Nodes, Journal of Biological Chemistry, vol.276, issue.40, pp.37594-601, 2001.
DOI : 10.1074/jbc.M103034200

K. Krause, Tissue distribution and putative physiological function of NOX family NADPH oxidases, Jpn J Infect Dis. Epub, vol.5710, issue.5, pp.28-928, 2004.

K. Bedard, V. Jaquet, and K. Krause, NOX5: from basic biology to signaling and disease, Free Radical Biology and Medicine, vol.52, issue.4, pp.725-759, 2012.
DOI : 10.1016/j.freeradbiomed.2011.11.023

J. Doroshow and S. Kummar, Translational research in oncology???10 years of progress and future prospects, Nature Reviews Clinical Oncology, vol.5, issue.11, pp.649-62, 2014.
DOI : 10.1371/journal.pone.0051500

T. Kawahara, H. Jackson, S. Smith, P. Simpson, and J. Lambeth, Nox5 Forms a Functional Oligomer Mediated by Self-Association of Its Dehydrogenase Domain, Biochemistry, vol.50, issue.12, pp.2013-2038, 2011.
DOI : 10.1021/bi1020088

D. Fulton, Nox5 and the Regulation of Cellular Function, Antioxidants & Redox Signaling, vol.11, issue.10, pp.2443-52, 2009.
DOI : 10.1089/ars.2009.2587

E. Schulz and T. Munzel, NOX5, a new "radical" player in human atherosclerosis?, J Am Coll Cardiol, vol.5222, issue.2211, pp.1810-1812, 2008.

S. Brar, Z. Corbin, T. Kennedy, R. Hemendinger, L. Thornton et al., NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells, AJP: Cell Physiology, vol.285, issue.2, pp.353-69, 2002.
DOI : 10.1152/ajpcell.00525.2002

B. Banfi, F. Tirone, I. Durussel, J. Knisz, P. Moskwa et al., Mechanism of Ca2+ Activation of the NADPH Oxidase 5 (NOX5), Journal of Biological Chemistry, vol.279, issue.18, pp.18583-91, 2004.
DOI : 10.1074/jbc.M310268200

F. Tirone, L. Radu, C. Craescu, and J. Cox, Identification of the Binding Site for the Regulatory Calcium-Binding Domain in the Catalytic Domain of NOX5, Biochemistry, vol.49, issue.4, pp.761-71, 2009.
DOI : 10.1021/bi901846y

F. Tirone and J. Cox, NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin, FEBS Letters, vol.282, issue.6, pp.1202-1210, 2007.
DOI : 10.1016/j.febslet.2007.02.047

F. Chen, Y. Yu, S. Haigh, J. Johnson, R. Lucas et al., Regulation of NADPH Oxidase 5 by Protein Kinase C Isoforms, PLoS ONE, vol.47, issue.2, p.3914983, 2014.
DOI : 10.1371/journal.pone.0088405.s002

E. Jamali, A. Valente, A. Lechleiter, J. Gamez, M. Pearson et al., Novel redox-dependent regulation of NOX5 by the tyrosine kinase c-Abl, Free Radical Biology and Medicine, vol.44, issue.5, pp.868-81, 2007.
DOI : 10.1016/j.freeradbiomed.2007.11.020

P. Tsvetkov, Protein Sequence Analysis Tool 2016 Available from: http://www.prot-seq.org

F. Tsvetkov, F. Devred, and A. Makarov, Thermodynamics of zinc binding to human S100A2]. Molekuliarnaia biologiia, pp.938-980, 2010.

A. Roman, F. Devred, V. Lobatchov, A. Makarov, V. Peyrot et al., Sequential binding of calcium ions to the B-repeat domain of SdrD from Staphylococcus aureus, Can J Microbiol, vol.2015, pp.1-7
URL : https://hal.archives-ouvertes.fr/hal-01478554

W. Johnson, Analyzing protein circular dichroism spectra for accurate secondary structures, Proteins: Structure, Function, and Genetics, vol.35, issue.3, pp.307-319, 1999.
DOI : 10.1002/(SICI)1097-0134(19990515)35:3<307::AID-PROT4>3.0.CO;2-3

X. Liang, A. Kaya, Y. Zhang, D. Le, D. Hua et al., Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins, BMC Biochemistry, vol.13, issue.1, pp.1-10, 2012.
DOI : 10.1016/S0002-9440(10)63525-0

R. Levine, L. Mosoni, B. Berlett, and E. Stadtman, Methionine residues as endogenous antioxidants in proteins, Proceedings of the National Academy of Sciences, vol.93, issue.26, pp.15036-15076, 1996.
DOI : 10.1073/pnas.93.26.15036

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC26351

S. Van-patten, E. Hanson, R. Bernasconi, K. Zhang, P. Manavalan et al., Oxidation of Methionine Residues in Antithrombin: EFFECTS ON BIOLOGICAL ACTIVITY AND HEPARIN BINDING, Journal of Biological Chemistry, vol.274, issue.15, pp.10268-76, 1999.
DOI : 10.1074/jbc.274.15.10268

M. Indeykina, I. Popov, S. Kozin, A. Kononikhin, O. Kharybin et al., Capabilities of MS for Analytical Quantitative Determination of the Ratio of ??- and ??Asp7 Isoforms of the Amyloid-?? Peptide in Binary Mixtures, Analytical Chemistry, vol.83, issue.8, pp.3205-3215, 2011.
DOI : 10.1021/ac103213j

J. Ladbury and M. Doyle, Biocalorimetry 2: Applications of Calorimetry in the Biological Sciences, 2004.
DOI : 10.1002/0470011122

P. Ziyarat, F. Asoodeh, A. , S. Barfeh, Z. Pirouzi et al., Probing the interaction of lysozyme with ciprofloxacin in the presence of different-sized Ag nano-particles by multispectroscopic techniques and isothermal titration calorimetry, Journal of Biomolecular Structure and Dynamics, vol.13, issue.4, pp.613-642, 2014.
DOI : 10.1016/j.jphotobiol.2008.11.013

C. Garnier, I. Protasevich, R. Gilli, P. Tsvetkov, V. Lobachov et al., The two-state process of the heat shock protein 90 thermal denaturation: effect of calcium and magnesium. Biochemical and biophysical research communications, pp.197-201, 1998.

S. Baladi, P. Tsvetkov, T. Petrova, T. Takagi, H. Sakamoto et al., Folding units in calcium vector protein of amphioxus: Structural and functional properties of its amino-and carboxy-terminal halves Protein science: a publication of the Protein Society, pp.771-779, 2001.

U. Weyemi, C. Redon, T. Aziz, R. Choudhuri, D. Maeda et al., Inactivation of NADPH Oxidases NOX4 and NOX5 Protects Human Primary Fibroblasts from Ionizing Radiation-Induced DNA Damage, Radiation Research, vol.183, issue.3, pp.262-70, 2015.
DOI : 10.1667/RR13799.1.S1

B. Kalyanaraman, Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms, Redox Biology, vol.1, issue.1, pp.244-57, 2013.
DOI : 10.1016/j.redox.2013.01.014

D. Lafitte, P. Tsvetkov, F. Devred, R. Toci, F. Barras et al., Cation binding mode of fully oxidised calmodulin explained by the unfolding of the apostate, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1600, issue.1-2, pp.1-2105, 2002.
DOI : 10.1016/S1570-9639(02)00450-8

P. Tsvetkov, B. Ezraty, J. Mitchell, F. Devred, V. Peyrot et al., Calorimetry and mass spectrometry study of oxidized calmodulin interaction with target and differential repair by methionine sulfoxide reductases, Biochimie, vol.87, issue.5, pp.473-80, 2005.
DOI : 10.1016/j.biochi.2004.11.020

P. Tsvetkov, I. Protasevich, R. Gilli, D. Lafitte, V. Lobachov et al., Apocalmodulin Binds to the Myosin Light Chain Kinase Calmodulin Target Site, Journal of Biological Chemistry, vol.274, issue.26, pp.18161-18165, 1999.
DOI : 10.1074/jbc.274.26.18161

E. Audran, R. Dagher, S. Gioria, P. Tsvetkov, A. Kulikova et al., A general framework to characterize inhibitors of calmodulin: Use of calmodulin inhibitors to study the interaction between calmodulin and its calmodulin binding domains, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1833, issue.7, pp.1720-1751, 2013.
DOI : 10.1016/j.bbamcr.2013.01.008