M. Ackmann, H. Wiech, and E. Mandelkow, Nonsaturable Binding Indicates Clustering of Tau on the Microtubule Surface in a Paired Helical Filament-like Conformation, Journal of Biological Chemistry, vol.275, issue.39, pp.30335-30343, 2000.
DOI : 10.1074/jbc.M002590200

H. Aizawa, H. Kawasaki, H. Murofushi, S. Kotani, K. Suzuki et al., A common amino acid sequence in 190-kDa microtubule-associated protein and tau for the promotion of microtubule assembly, Journal of Biological Chemistry, issue.10, pp.264-5885, 1989.

E. Alli, J. M. Yang, J. M. Ford, and W. N. Hait, Reversal of Stathmin-Mediated Resistance to Paclitaxel and Vinblastine in Human Breast Carcinoma Cells, Molecular Pharmacology, vol.71, issue.5, pp.1233-1240, 2007.
DOI : 10.1124/mol.106.029702

J. M. Andreu and S. N. Timasheff, Interaction of tubulin with single ring analogs of colchicine, Biochemistry, vol.21, issue.3, pp.534-543, 1982.
DOI : 10.1021/bi00532a019

M. Banerjee, A. Poddar, G. Mitra, A. Surolia, T. Owa et al., Sulfonamide Drugs Binding to the Colchicine Site of Tubulin:?? Thermodynamic Analysis of the Drug???Tubulin Interactions by Isothermal Titration Calorimetry, Journal of Medicinal Chemistry, vol.48, issue.2, pp.547-555, 2005.
DOI : 10.1021/jm0494974

L. D. Belmont and T. J. Mitchison, Identification of a Protein That Interacts with Tubulin Dimers and Increases the Catastrophe Rate of Microtubules, Cell, vol.84, issue.4, pp.623-631, 1996.
DOI : 10.1016/S0092-8674(00)81037-5

G. E. Box and N. R. Draper, Empirical model-building and response surfaces, 1987.

R. M. Buey, I. Barasoain, E. Jackson, A. Meyer, P. Giannakakou et al., Microtubule Interactions with Chemically Diverse Stabilizing Agents: Thermodynamics of Binding to the Paclitaxel Site Predicts Cytotoxicity, Chemistry & Biology, vol.12, issue.12, pp.12-1269, 2005.
DOI : 10.1016/j.chembiol.2005.09.010

R. M. Buey, J. F. Díaz, J. M. Andreu, A. O-'brate, P. Giannakakou et al., Interaction of Epothilone Analogs with the Paclitaxel Binding Site, Chemistry & Biology, vol.11, issue.2, pp.225-236, 2004.
DOI : 10.1016/j.chembiol.2004.01.014

K. A. Butner and M. W. Kirschner, Tau protein binds to microtubules through a flexible array of distributed weak sites, The Journal of Cell Biology, vol.115, issue.3, pp.717-730, 1991.
DOI : 10.1083/jcb.115.3.717

M. R. Caplan and H. P. Erickson, Apparent Cooperative Assembly of the Bacterial Cell Division Protein FtsZ Demonstrated by Isothermal Titration Calorimetry, Journal of Biological Chemistry, vol.278, issue.16, pp.13784-13788, 2003.
DOI : 10.1074/jbc.M300860200

Y. Chen, S. L. Milam, and H. P. Erickson, SulA Inhibits Assembly of FtsZ by a Simple Sequestration Mechanism, Biochemistry, vol.51, issue.14, pp.3100-3109, 2012.
DOI : 10.1021/bi201669d

J. J. Correia and W. F. Stafford, Chapter 15 Extracting Equilibrium Constants from Kinetically Limited Reacting Systems, Methods in Enzymology, vol.455, pp.419-446, 2009.
DOI : 10.1016/S0076-6879(08)04215-8

B. Demeler, E. Brookes, and L. Nagel-steger, Chapter 4 Analysis of Heterogeneity in Molecular Weight and Shape by Analytical Ultracentrifugation Using Parallel Distributed Computing, Methods in Enzymology, vol.454, pp.87-113, 2009.
DOI : 10.1016/S0076-6879(08)03804-4

F. Devred, P. Barbier, D. Lafitte, I. Landrieu, G. Lippens et al., Microtubule and MAPs, Methods in Cell Biology, vol.95, pp.449-480, 2010.
DOI : 10.1016/S0091-679X(10)95023-1

URL : https://hal.archives-ouvertes.fr/hal-00508818

F. Devred, S. Douillard, C. Briand, and V. Peyrot, First tau repeat domain binding to growing and taxol-stabilized microtubules, and serine 262 residue phosphorylation, FEBS Letters, vol.16, issue.1-3, pp.1-3, 2002.
DOI : 10.1016/S0014-5793(02)02999-X

F. Devred, P. O. Tsvetkov, P. Barbier, D. Allegro, S. B. Horwitz et al., Stathmin/Op18 is a novel mediator of vinblastine activity, FEBS Letters, vol.46, issue.17, pp.2484-2488, 2008.
DOI : 10.1016/j.febslet.2008.06.035

P. Domadia, S. Swarup, A. Bhunia, J. Sivaraman, and D. Dasgupta, Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde, Biochemical Pharmacology, vol.74, issue.6, pp.831-840, 2007.
DOI : 10.1016/j.bcp.2007.06.029

D. G. Drubin and M. W. Kirschner, Tau protein function in living cells, The Journal of Cell Biology, vol.103, issue.6, pp.2739-2746, 1986.
DOI : 10.1083/jcb.103.6.2739

A. R. Duan and H. V. Goodson, Taxol-stabilized microtubules promote the formation of filaments from unmodified full-length Tau in vitro, Molecular Biology of the Cell, vol.23, issue.24, pp.4796-4806, 2012.
DOI : 10.1091/mbc.E12-05-0374

D. J. Ennulat, R. K. Liem, G. A. Hashim, and M. L. Shelanski, Two separate 18-amino acid domains of tau promote the polymerization of tubulin, Journal of Biological Chemistry, issue.10, pp.264-5327, 1989.

M. W. Freyer and E. A. Lewis, Isothermal Titration Calorimetry: Experimental Design, Data Analysis, and Probing Macromolecule/Ligand Binding and Kinetic Interactions, Methods in Cell Biology, vol.84, pp.79-113, 2008.
DOI : 10.1016/S0091-679X(07)84004-0

R. P. Frigon and J. C. Lee, The stabilization of calf-brain microtubule protein by sucrose, Archives of Biochemistry and Biophysics, vol.153, issue.2, pp.587-589, 1972.
DOI : 10.1016/0003-9861(72)90376-1

M. Goedert, C. M. Wischik, R. A. Crowther, J. E. Walker, and A. Klug, Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau., Proceedings of the National Academy of Sciences, vol.85, issue.11, pp.4051-4055, 1988.
DOI : 10.1073/pnas.85.11.4051

S. Gupta, S. Chakraborty, A. Poddar, N. Sarkar, K. P. Das et al., BisANS binding to tubulin: Isothermal titration calorimetry and the site-specific proteolysis reveal the GTP-induced structural stability of tubulin, Proteins: Structure, Function, and Bioinformatics, vol.40, issue.2, pp.283-289, 2003.
DOI : 10.1002/prot.10292

N. Gustke, B. Trinczek, J. Biernat, E. M. Mandelkow, and E. Mandelkow, Domains of tau Protein and Interactions with Microtubules, Biochemistry, vol.33, issue.32, pp.33-9511, 1994.
DOI : 10.1021/bi00198a017

N. W. Harbison, S. Bhattacharya, and D. Eliezer, Assigning Backbone NMR Resonances for Full Length Tau Isoforms: Efficient Compromise between Manual Assignments and Reduced Dimensionality, PLoS ONE, vol.50, issue.Pt 6, p.34679, 2012.
DOI : 10.1371/journal.pone.0034679.t001

P. Holmfeldt, N. Larsson, B. Segerman, B. Howell, J. Morabito et al., The Catastrophe-promoting Activity of Ectopic Op18/Stathmin Is Required for Disruption of Mitotic Spindles But Not Interphase Microtubules, Molecular Biology of the Cell, vol.12, issue.1, pp.73-83, 2001.
DOI : 10.1091/mbc.12.1.73

S. Honnappa, B. Cutting, W. Jahnke, J. Seelig, and M. O. Steinmetz, Thermodynamics of the Op18/Stathmin-Tubulin Interaction, Journal of Biological Chemistry, vol.278, issue.40, pp.38926-38934, 2003.
DOI : 10.1074/jbc.M305546200

S. Honnappa, W. Jahnke, J. Seelig, and M. O. Steinmetz, Control of Intrinsically Disordered Stathmin by Multisite Phosphorylation, Journal of Biological Chemistry, vol.281, issue.23, pp.16078-16083, 2006.
DOI : 10.1074/jbc.M513524200

S. Huecas, C. Schaffner-barbero, W. Garcia, H. Yebenes, J. M. Palacios et al., The Interactions of Cell Division Protein FtsZ with Guanine Nucleotides, Journal of Biological Chemistry, vol.282, issue.52, pp.37515-37528, 2007.
DOI : 10.1074/jbc.M706399200

S. Kar, J. Fan, M. J. Smith, M. Goedert, and L. A. Amos, Repeat motifs of tau bind to the insides of microtubules in the absence of taxol, The EMBO Journal, vol.22, issue.1, pp.70-77, 2003.
DOI : 10.1093/emboj/cdg001

E. Kiris, D. Ventimiglia, and S. C. Feinstein, Quantitative Analysis of MAP-Mediated Regulation of Microtubule Dynamic Instability In Vitro, Methods in Cell Biology, vol.95, pp.481-503, 2010.
DOI : 10.1016/S0091-679X(10)95024-3

S. Konzack, E. Thies, A. Marx, E. M. Mandelkow, and E. Mandelkow, Swimming against the Tide: Mobility of the Microtubule-Associated Protein Tau in Neurons, Journal of Neuroscience, vol.27, issue.37, pp.9916-9927, 2007.
DOI : 10.1523/JNEUROSCI.0927-07.2007

J. E. Ladbury and M. L. Doyle, Biocalorimetry 2: Applications of calorimetry in the biological sciences, 2004.
DOI : 10.1002/0470011122

N. Larsson, B. Segerman, H. M. Gradin, E. Wandzioch, L. Cassimeris et al., Mutations of Oncoprotein 18/Stathmin Identify Tubulin-Directed Regulatory Activities Distinct from Tubulin Association, Molecular and Cellular Biology, vol.19, issue.3, pp.2242-2250, 1999.
DOI : 10.1128/MCB.19.3.2242

J. Lebowitz, M. S. Lewis, and P. Schuck, Modern analytical ultracentrifugation in protein science: A tutorial review, Protein Science, vol.275, issue.(2), pp.2067-2079, 2002.
DOI : 10.1110/ps.0207702

V. Makrides, M. R. Massie, S. C. Feinstein, and J. Lew, Evidence for two distinct binding sites for tau on microtubules, Proceedings of the National Academy of Sciences of the United States of America, pp.6746-6751, 2004.
DOI : 10.1073/pnas.0400992101

M. Menendez, J. Laynez, F. J. Medrano, and J. M. Andreu, A thermodynamic study of the interaction of tubulin with colchicine site ligands, Journal of Biological Chemistry, vol.264, pp.16367-16371, 1989.

T. Mitchison and M. Kirschner, Dynamic instability of microtubule growth, Nature, vol.61, issue.5991, pp.237-242, 1984.
DOI : 10.1038/312237a0

G. C. Na and S. N. Timasheff, [38]Physical properties of purified calf brain tubulin, Methods in Enzymology, vol.85, pp.393-408, 1982.
DOI : 10.1016/0076-6879(82)85040-4

V. Peyrot, D. Leynadier, M. Sarrazin, C. Briand, M. Menendez et al., Mechanism of binding of the new antimitotic drug MDL 27048 to the colchicine site of tubulin: Equilibrium studies, Biochemistry, vol.31, issue.45, pp.31-11125, 1992.
DOI : 10.1021/bi00160a024

M. M. Pierce, C. S. Raman, and B. T. Nall, Isothermal Titration Calorimetry of Protein???Protein Interactions, Methods, vol.19, issue.2, pp.213-221, 1999.
DOI : 10.1006/meth.1999.0852

J. L. Ross and R. Dixit, Multiple Color Single Molecule TIRF Imaging and Tracking of MAPs and Motors, Methods in Cell Biology, vol.95, pp.521-542, 2010.
DOI : 10.1016/S0091-679X(10)95026-7

P. D. Ross and S. Subramanian, Thermodynamics of protein association reactions: forces contributing to stability, Biochemistry, vol.20, issue.11, pp.3096-3102, 1981.
DOI : 10.1021/bi00514a017

A. Samsonov, J. Z. Yu, M. Rasenick, and S. V. Popov, Tau interaction with microtubules in vivo, Journal of Cell Science, vol.117, issue.25, pp.6129-6141, 2004.
DOI : 10.1242/jcs.01531

P. Schuck, On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation, Analytical Biochemistry, vol.320, issue.1, pp.104-124, 2003.
DOI : 10.1016/S0003-2697(03)00289-6

F. O. Tsvetkov, A. A. Kulikova, F. Devred, E. Zernii, D. Lafitte et al., Thermodynamics of calmodulin and tubulin binding to the vinca-alkaloid vinorelbine, Molecular Biology, vol.45, issue.4, pp.697-702, 2011.
DOI : 10.1134/S0026893311040108

P. O. Tsvetkov, A. A. Kulikova, A. V. Golovin, Y. V. Tkachev, A. I. Archakov et al., Minimal Zn2+ Binding Site of Amyloid-??, Biophysical Journal, vol.99, issue.10, pp.84-86, 2010.
DOI : 10.1016/j.bpj.2010.09.015

P. O. Tsvetkov, A. A. Makarov, S. Malesinski, V. Peyrot, and F. Devred, New insights into tau???microtubules interaction revealed by isothermal titration calorimetry, Biochimie, vol.94, issue.3, pp.916-919, 2012.
DOI : 10.1016/j.biochi.2011.09.011

M. D. Weingarten, A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner, A protein factor essential for microtubule assembly., Proceedings of the National Academy of Sciences of the United States of America, pp.1858-1862, 1975.
DOI : 10.1073/pnas.72.5.1858

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC432646

L. Wilson and J. J. Correia, Microtubules, in vivo, 2010.

A. F. Winder and W. L. Gent, Correction of light-scattering errors in spectrophotometric protein determinations, Biopolymers, vol.204, issue.7, pp.1243-1251, 1971.
DOI : 10.1002/bip.360100713