Skip to Main content Skip to Navigation
Journal articles

Sequential control variates for functionals of Markov processes

Emmanuel Gobet 1, 2 Sylvain Maire 3, 4
CNRS - Centre National de la Recherche Scientifique : UMR7502, INPL - Institut National Polytechnique de Lorraine, Université Nancy 2, UHP - Université Henri Poincaré - Nancy 1, CRISAM - Inria Sophia Antipolis - Méditerranée , INRIA Lorraine
Abstract : Using a sequential control variates algorithm, we compute Monte Carlo approximations of solutions of linear partial differential equations connected to linear Markov processes by the Feynman--Kac formula. It includes diffusion processes with or without absorbing/reflecting boundary and jump processes. We prove that the bias and the variance decrease geometrically with the number of steps of our algorithm. Numerical examples show the efficiency of the method on elliptic and parabolic problems.
Document type :
Journal articles
Complete list of metadata
Contributor : William Domingues Vinhas Connect in order to contact the contributor
Submitted on : Tuesday, February 28, 2017 - 10:24:49 PM
Last modification on : Wednesday, October 20, 2021 - 12:24:00 AM



Emmanuel Gobet, Sylvain Maire. Sequential control variates for functionals of Markov processes. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2006, 43 (3), pp.1256-1275. ⟨10.1137/040609124⟩. ⟨hal-01479838⟩



Record views