W. Almawi and O. Melemedjian, Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor, J Leukoc Biol, vol.71, pp.9-15, 2002.

J. Mattern, M. Büchler, and I. Herr, Cell Cycle Arrest by Glucocorticoids May Protect Normal Tissue and Solid Tumors from Cancer Therapy, Cancer Biology & Therapy, vol.6, issue.9, pp.1345-1354, 2007.
DOI : 10.4161/cbt.6.9.4765

T. Dickmeis and N. Foulkes, Glucocorticoids and circadian clock control of cell proliferation: At the interface between three dynamic systems, Molecular and Cellular Endocrinology, vol.331, issue.1, pp.11-22, 2011.
DOI : 10.1016/j.mce.2010.09.001

URL : https://hal.archives-ouvertes.fr/hal-00639781

H. Yang-yen, J. Chambard, and Y. Sun, Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction, Cell, vol.62, issue.6, pp.1205-1215, 1990.
DOI : 10.1016/0092-8674(90)90396-V

L. Mckay and J. Cidlowski, Cross-talk between nuclear factor-B and the steroid hormone receptors: mechanisms of mutual antagonism

D. Bosscher, K. , V. Berghe, W. Haegeman, and G. , The Interplay between the Glucocorticoid Receptor and Nuclear Factor-??B or Activator Protein-1: Molecular Mechanisms for Gene Repression, Endocrine Reviews, vol.24, issue.4, pp.488-522, 2003.
DOI : 10.1210/er.2002-0006

R. Nissen and K. Yamamoto, The glucocorticoid receptor inhibits NFkappa B by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain, Genes & Development, vol.14, issue.18, pp.2314-2329, 2000.
DOI : 10.1101/gad.827900

G. Pascual and C. Glass, Nuclear receptors versus inflammation: mechanisms of transrepression, Trends in Endocrinology & Metabolism, vol.17, issue.8, pp.321-327, 2006.
DOI : 10.1016/j.tem.2006.08.005

J. Drouin, S. Bilodeau, and S. Vallette-kasic, Of old and new diseases: genetics of pituitary ACTH excess (Cushing) and deficiency, Clinical Genetics, vol.197, issue.1-2, pp.175-182, 2007.
DOI : 10.1111/j.1399-0004.2007.00877.x

S. Jordan, K. Lidhar, M. Korbonits, D. Lowe, and A. Grossman, Cyclin D and cyclin E expression in normal and adenomatous pituitary, European Journal of Endocrinology, vol.143, issue.1, pp.1-6, 2000.
DOI : 10.1530/eje.0.143R001

P. Dahia, R. Aguiar, and J. Honegger, Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours, Oncogene, vol.16, issue.1, pp.69-76, 1998.
DOI : 10.1038/sj.onc.1201516

A. Roussel-gervais, S. Bilodeau, and S. Vallette, in Pituitary Tumorigenesis, Molecular Endocrinology, vol.24, issue.9, pp.1835-1545, 2010.
DOI : 10.1210/me.2010-0091

S. Bilodeau, S. Vallette-kasic, and Y. Gauthier, Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease, Genes & Development, vol.20, issue.20, pp.2871-2886, 2006.
DOI : 10.1101/gad.1444606

URL : https://hal.archives-ouvertes.fr/hal-00141349

L. Perez-rivas, M. Theodoropoulou, and F. Ferraù, The Gene of the Ubiquitin-Specific Protease 8 Is Frequently Mutated in Adenomas Causing Cushing's Disease, The Journal of Clinical Endocrinology & Metabolism, vol.100, issue.7, pp.997-1004, 2015.
DOI : 10.1210/jc.2015-1453

M. Reincke, S. Sbiera, and A. Hayakawa, Mutations in the deubiquitinase gene USP8 cause Cushing's disease, Nature Genetics, vol.12, issue.1, pp.31-38, 2015.
DOI : 10.1074/jbc.272.33.20538

Z. Ma, Z. Song, and J. Chen, Recurrent gain-of-function USP8 mutations in Cushing's disease, Cell Research, vol.75, issue.3, pp.306-317, 2015.
DOI : 10.1038/ng.3166

D. Langlais, C. Couture, A. Balsalobre, and J. Drouin, Regulatory Network Analyses Reveal Genome-Wide Potentiation of LIF Signaling by Glucocorticoids and Define an Innate Cell Defense Response, PLoS Genetics, vol.14, issue.10, p.1000224, 2008.
DOI : 10.1371/journal.pgen.1000224.s005

J. Rambaud, J. Desroches, A. Balsalobre, J. Drouin, and . Tif1, TIF1??/KAP-1 Is a Coactivator of the Orphan Nuclear Receptor NGFI-B/Nur77, Journal of Biological Chemistry, vol.284, issue.21, pp.14147-14156, 2009.
DOI : 10.1074/jbc.M809023200

D. Langlais, C. Couture, A. Balsalobre, and J. Drouin, The Stat3/GR Interaction Code: Predictive Value of Direct/Indirect DNA Recruitment for Transcription Outcome, Molecular Cell, vol.47, issue.1, pp.38-49, 2012.
DOI : 10.1016/j.molcel.2012.04.021

L. Budry, A. Balsalobre, and Y. Gauthier, The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling, Genes & Development, vol.26, issue.20, pp.2299-2310, 2012.
DOI : 10.1101/gad.200436.112

B. Lamolet, A. Pulichino, and T. Lamonerie, A Pituitary Cell-Restricted T Box Factor, Tpit, Activates POMC Transcription in Cooperation with Pitx Homeoproteins, Cell, vol.104, issue.6, pp.849-859, 2001.
DOI : 10.1016/S0092-8674(01)00282-3

URL : https://hal.archives-ouvertes.fr/hal-00023729

C. Lanctôt, Y. Gauthier, and J. Drouin, Pituitary Homeobox 1 (Ptx1) Is Differentially Expressed during Pituitary Development, Endocrinology, vol.140, issue.3, pp.1416-1422, 1999.
DOI : 10.1210/en.140.3.1416

J. Tront, B. Hoffman, and D. Liebermann, Gadd45a Suppresses Ras-Driven Mammary Tumorigenesis by Activation of c-Jun NH2-Terminal Kinase and p38 Stress Signaling Resulting in Apoptosis and Senescence, Cancer Research, vol.66, issue.17, pp.8448-8454, 2006.
DOI : 10.1158/0008-5472.CAN-06-2013

M. Vairapandi, A. Balliet, B. Hoffman, and D. Liebermann, GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress, Journal of Cellular Physiology, vol.258, issue.3, pp.327-338, 2002.
DOI : 10.1002/jcp.10140

J. Ying, G. Srivastava, and W. Hsieh, The Stress-Responsive Gene GADD45G Is a Functional Tumor Suppressor, with Its Response to Environmental Stresses Frequently Disrupted Epigenetically in Multiple Tumors, Clinical Cancer Research, vol.11, issue.18, pp.6442-6449, 2005.
DOI : 10.1158/1078-0432.CCR-05-0267

X. Zhang, H. Sun, and D. Danila, Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis, J Clin Endocrinol Metab, vol.87, pp.1262-1267, 2002.

C. Wu, S. Kirley, and H. Xiao, Cables enhances cdk2 tyrosine 15 phosphorylation by Wee1, inhibits cell growth, and is lost in many human colon and squamous cancers, Cancer Res, vol.61, pp.7325-7332, 2001.

T. Arnason, M. Pino, and O. Yilmaz, mice, Cancer Biology & Therapy, vol.62, issue.7, pp.672-678, 2013.
DOI : 10.1136/jcp.2005.026666

Q. Dong, S. Kirley, B. Rueda, C. Zhao, L. Zukerberg et al., Loss of Cables, a Novel Gene on Chromosome 18q, in Ovarian Cancer, Modern Pathology, vol.19, issue.9, pp.863-868, 2003.
DOI : 10.1074/jbc.M108535200

S. Kirley, D. Apuzzo, M. Lauwers, G. Graeme-cook, F. Chung et al., The cables gene on chromosome 18Q regulates colon cancer progression in vivo, Cancer Biology & Therapy, vol.4, issue.8, pp.861-863, 2005.
DOI : 10.4161/cbt.4.8.1894

Z. Shi, Z. Li, and Z. Li, Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3, Oncogene, vol.3, issue.19, pp.2538-2545, 2015.
DOI : 10.1002/(SICI)1097-0215(20000120)89:1<14::AID-IJC3>3.0.CO;2-L

Z. Shi, H. Park, and Y. Du, Cables1 Complex Couples Survival Signaling to the Cell Death Machinery, Cancer Research, vol.75, issue.1, pp.147-158, 2015.
DOI : 10.1158/0008-5472.CAN-14-0036

J. Hsin and J. Manley, The RNA polymerase II CTD coordinates transcription and RNA processing, Genes & Development, vol.26, issue.19, pp.2119-2137, 2012.
DOI : 10.1101/gad.200303.112

B. Buonassisi, G. Sato, and A. Cohen, HORMONE-PRODUCING CULTURES OF ADRENAL AND PITUITARY TUMOR ORIGIN, Proceedings of the National Academy of Sciences, vol.48, issue.7, pp.1184-1190, 1962.
DOI : 10.1073/pnas.48.7.1184

S. Kirley, B. Rueda, D. Chung, and L. Zukerberg, Increased growth rate, Delayed senescense and decreased serum dependence characterize cables-deficient cells, Cancer Biology & Therapy, vol.4, issue.6, pp.654-658, 2005.
DOI : 10.4161/cbt.4.6.1732

S. Bilodeau, A. Roussel-gervais, and J. Drouin, Distinct Developmental Roles of Cell Cycle Inhibitors p57Kip2 and p27Kip1 Distinguish Pituitary Progenitor Cell Cycle Exit from Cell Cycle Reentry of Differentiated Cells, Molecular and Cellular Biology, vol.29, issue.7, pp.1895-1908, 2009.
DOI : 10.1128/MCB.01885-08

V. Chesnokova, S. Zonis, and K. Kovacs, p21Cip1 restrains pituitary tumor growth, Proceedings of the National Academy of Sciences, vol.105, issue.45, pp.17498-17503, 2008.
DOI : 10.1073/pnas.0804810105

H. Ikeda, T. Yoshimoto, and N. Shida, Molecular analysis of p21 and p27 genes in human pituitary adenomas, British Journal of Cancer, vol.76, issue.9, pp.1119-1123, 1997.
DOI : 10.1038/bjc.1997.521