L. Rahib, B. Smith, R. Aizenberg, A. Rosenzweig, J. Fleshman et al., Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States, Cancer Research, vol.74, issue.11, pp.2913-2921, 2014.
DOI : 10.1158/0008-5472.CAN-14-0155

A. Vincent, J. Herman, R. Schulick, R. Hruban, and M. Goggins, Pancreatic cancer, The Lancet, vol.378, issue.9791, pp.607-620, 2011.
DOI : 10.1016/S0140-6736(10)62307-0

URL : https://hal.archives-ouvertes.fr/hal-01429187

A. Lockhart, M. Rothenberg, and J. Berlin, Treatment for Pancreatic Cancer: Current Therapy and Continued Progress, Gastroenterology, vol.128, issue.6, pp.1642-1654, 2005.
DOI : 10.1053/j.gastro.2005.03.039

K. Pliarchopoulou and D. Pectasides, Pancreatic cancer: Current and future treatment strategies, Cancer Treatment Reviews, vol.35, issue.5, pp.431-436, 2009.
DOI : 10.1016/j.ctrv.2009.02.005

N. Jarufe, P. Mcmaster, A. Mayer, D. Mirza, J. Buckels et al., Surgical treatment of metastases to the pancreas, The Surgeon, vol.3, issue.2, pp.79-83, 2005.
DOI : 10.1016/S1479-666X(05)80066-6

J. Müller-nordhorn, S. Roll, M. Böhmig, M. Nocon, A. Reich et al., Health-Related Quality of Life in Patients with Pancreatic Cancer, Digestion, vol.74, issue.2, pp.118-125, 2006.
DOI : 10.1159/000098177

L. Amundadottir, P. Kraft, R. Stolzenberg-solomon, C. Fuchs, G. Petersen et al., Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer, Nature Genetics, vol.155, issue.9, pp.986-990, 2009.
DOI : 10.1002/sim.1186

S. Low, A. Kuchiba, H. Zembutsu, A. Saito, A. Takahashi et al., Genome-Wide Association Study of Pancreatic Cancer in Japanese Population, PLoS ONE, vol.83, issue.7, p.11824, 2010.
DOI : 10.1371/journal.pone.0011824.s005

I. Aird, H. Bentall, and J. Roberts, Relationship Between Cancer of Stomach and the ABO Blood Groups, BMJ, vol.1, issue.4814, pp.799-801, 1953.
DOI : 10.1136/bmj.1.4814.799

D. Marcus, The ABO and Lewis Blood-Group System, New England Journal of Medicine, vol.280, issue.18, pp.994-1006, 1969.
DOI : 10.1056/NEJM196905012801806

B. Wolpin, P. Kraft, M. Gross, K. Helzlsouer, H. Bueno-de-mesquita et al., Pancreatic Cancer Risk and ABO Blood Group Alleles: Results from the Pancreatic Cancer Cohort Consortium, Cancer Research, vol.70, issue.3, pp.1015-1023, 2010.
DOI : 10.1158/0008-5472.CAN-09-2993

B. Wolpin, A. Chan, P. Hartge, S. Chanock, P. Kraft et al., ABO Blood Group and the Risk of Pancreatic Cancer, JNCI Journal of the National Cancer Institute, vol.101, issue.6, pp.424-431, 2009.
DOI : 10.1093/jnci/djp020

D. Melzer, J. Perry, D. Hernandez, A. Corsi, K. Stevens et al., A Genome-Wide Association Study Identifies Protein Quantitative Trait Loci (pQTLs), PLoS Genetics, vol.14, issue.5, p.1000072, 2008.
DOI : 10.1371/journal.pgen.1000072.s009

G. Paré, D. Chasman, M. Kellogg, R. Zee, N. Rifai et al., Novel Association of ABO Histo-Blood Group Antigen with Soluble ICAM-1: Results of a Genome-Wide Association Study of 6,578 Women, PLoS Genetics, vol.308, issue.7, p.1000118, 2008.
DOI : 10.1371/journal.pgen.1000118.s002

G. Petersen, L. Amundadottir, C. Fuchs, P. Kraft, R. Stolzenberg-solomon et al., A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15, Nat Genet, vol.33, issue.42, pp.224-228, 2010.
DOI : 10.1038/ng.522

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853179

Y. Wang, P. Broderick, E. Webb, X. Wu, J. Vijayakrishnan et al., Common 5p15.33 and 6p21.33 variants influence lung cancer risk, Nature Genetics, vol.40, issue.12, pp.1407-1409, 2008.
DOI : 10.1002/ijc.20436

T. Rafnar, P. Sulem, S. Stacey, F. Geller, J. Gudmundsson et al., Sequence variants at the TERT-CLPTM1L locus associate with many cancer types, Nature Genetics, vol.55, issue.2, pp.221-227, 2009.
DOI : 10.1073/pnas.95.10.5607

K. Yamamoto, A. Okamoto, S. Isonishi, K. Ochiai, and Y. Ohtake, A Novel Gene, CRR9, Which Was Up-Regulated in CDDP-Resistant Ovarian Tumor Cell Line, Was Associated with Apoptosis, Biochemical and Biophysical Research Communications, vol.280, issue.4, pp.1148-1154, 2001.
DOI : 10.1006/bbrc.2001.4250

J. Jia, A. Bosley, A. Thompson, J. Hoskins, A. Cheuk et al., CLPTM1L Promotes Growth and Enhances Aneuploidy in Pancreatic Cancer Cells, Cancer Research, vol.74, issue.10, pp.2785-2795, 2014.
DOI : 10.1158/0008-5472.CAN-13-3176

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030677

Y. Liu, L. Cao, Z. Li, D. Zhou, W. Liu et al., A Genome-Wide Association Study Identifies a Locus on TERT for Mean Telomere Length in Han Chinese, PLoS ONE, vol.39, issue.1, p.85043, 2014.
DOI : 10.1371/journal.pone.0085043.s010

C. Wu, P. Kraft, R. Stolzenberg-solomon, E. Steplowski, M. Brotzman et al., Genome-wide association study of survival in patients with pancreatic adenocarcinoma, Gut, vol.7, issue.1, pp.152-160, 2014.
DOI : 10.1136/gutjnl-2012-303477

T. He, A. Sparks, C. Rago, H. Hermeking, L. Zawel et al., Identification of c-MYC as a Target of the APC Pathway, Science, vol.281, issue.5382, pp.1509-1512, 1998.
DOI : 10.1126/science.281.5382.1509

T. He, T. Chan, B. Vogelstein, and K. Kinzler, PPAR?? Is an APC-Regulated Target of Nonsteroidal Anti-Inflammatory Drugs, Cell, vol.99, issue.3, pp.335-345, 1999.
DOI : 10.1016/S0092-8674(00)81664-5

Y. Lin, K. Ono, S. Satoh, H. Ishiguro, M. Fujita et al., Identification of AF17 As a Downstream Gene of the b-catenin/T-Cell Factor Pathway and Its Involvement in Colorectal Carcinogenesis, Cancer Res, vol.61, pp.6345-6349, 2001.

M. Shtutman, J. Zhurinsky, I. Simcha, C. Albanese, D. Amico et al., The cyclin D1 gene is a target of the ??-catenin/LEF-1 pathway, Proceedings of the National Academy of Sciences, vol.96, issue.10, pp.5522-5527, 1999.
DOI : 10.1073/pnas.96.10.5522

O. Tetsu and F. Mccormick, ?-catenin regulates expression of cyclin D1 in colon carcinoma cells, Nature, vol.398, pp.422-426, 1999.

J. Chen, T. Montier, and C. Férec, Molecular pathology and evolutionary and physiological implications of pancreatitis-associated cationic trypsinogen mutations, Human Genetics, vol.109, issue.3, pp.245-252, 2001.
DOI : 10.1007/s004390100580

T. Kainu, S. Juo, R. Desper, A. Schaffer, E. Gillanders et al., Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus, Proceedings of the National Academy of Sciences, vol.97, issue.17, pp.9603-9608, 2000.
DOI : 10.1073/pnas.97.17.9603

E. Childs, E. Mocci, D. Campa, P. Bracci, S. Gallinger et al., Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer, Nature Genetics, vol.7, issue.8, pp.911-916, 2015.
DOI : 10.1016/j.ajhg.2011.02.002

D. Li, E. Duell, K. Yu, H. Risch, S. Olson et al., Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer, Carcinogenesis, vol.33, issue.7, pp.1384-1390, 2012.
DOI : 10.1093/carcin/bgs151

M. Glucksmann, M. Lehto, O. Tayber, S. Scotti, L. Berkemeier et al., Novel mutations and a mutational hotspot in the MODY3 gene, Diabetes, vol.46, issue.6, pp.1081-1086, 1997.
DOI : 10.2337/diabetes.46.6.1081

C. Carette, C. Vaury, A. Barthélémy, S. Clauin, J. Grünfeld et al., ?? Gene (Transcription Factor 2, Hepatic) as a Cause of Maturity Onset Diabetes of the Young Type 5, The Journal of Clinical Endocrinology & Metabolism, vol.92, issue.7, pp.2844-2847, 2007.
DOI : 10.1210/jc.2007-0286

J. Holmkvist, C. Cervin, V. Lyssenko, W. Winckler, D. Anevski et al., Common variants in HNF-1 ?? and risk of type 2 diabetes, Diabetologia, vol.28, issue.12, pp.2882-2891, 2006.
DOI : 10.1007/s00125-006-0450-x

B. Pierce and H. Ahsan, Genome-Wide "Pleiotropy Scan" Identifies HNF1A Region as a Novel Pancreatic Cancer Susceptibility Locus, Cancer Research, vol.71, issue.13, pp.4352-4358, 2011.
DOI : 10.1158/0008-5472.CAN-11-0124

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129443

B. Wolpin, C. Rizzato, P. Kraft, C. Kooperberg, G. Petersen et al., Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer, Nature Genetics, vol.88, issue.9, pp.994-1000, 2014.
DOI : 10.1038/ng.3052

F. Giardiello, S. Welsh, S. Hamilton, G. Offerhaus, A. Gittelsohn et al., Increased Risk of Cancer in the Peutz???Jeghers Syndrome, New England Journal of Medicine, vol.316, issue.24, pp.1511-1514, 1987.
DOI : 10.1056/NEJM198706113162404

S. Lee, B. Kang, Y. Chae, H. Kim, S. Park et al., Genetic Variations in STK11, PRKAA1, and TSC1 Associated with Prognosis for Patients with Colorectal Cancer, Annals of Surgical Oncology, vol.130, issue.Pt. 23, pp.634-643, 2014.
DOI : 10.1245/s10434-014-3729-z

D. Bartsch, M. Sina-frey, S. Lang, A. Wild, B. Gerdes et al., CDKN2A Germline Mutations in Familial Pancreatic Cancer, Annals of Surgery, vol.236, issue.6, pp.730-737, 2002.
DOI : 10.1097/00000658-200212000-00005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1422639

D. Marco, M. Astolfi, A. Grassi, E. Vecchiarelli, S. Macchini et al., Characterization of pancreatic ductal adenocarcinoma using whole transcriptome sequencing and copy number analysis by single-nucleotide polymorphism array, Molecular Medicine Reports, vol.12, pp.7479-7484, 2015.
DOI : 10.3892/mmr.2015.4344

N. Howes, M. Lerch, W. Greenhalf, D. Stocken, I. Ellis et al., Clinical and genetic characteristics of hereditary pancreatitis in Europe, Clinical Gastroenterology and Hepatology, vol.2, issue.3, pp.252-261, 2004.
DOI : 10.1016/S1542-3565(04)00013-8

E. Slater, P. Langer, E. Niemczyk, K. Strauch, J. Butler et al., PALB2 mutations in European familial pancreatic cancer families, PALB2 mutations in European familial pancreatic cancer families, pp.490-494, 2010.
DOI : 10.1111/j.1399-0004.2010.01425.x

S. Jones, R. Hruban, M. Kamiyama, M. Borges, X. Zhang et al., Exomic Sequencing Identifies PALB2 as a Pancreatic Cancer Susceptibility Gene, Science, vol.324, issue.5924, p.217, 2009.
DOI : 10.1126/science.1171202

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684332

L. Huang, C. Wu, D. Yu, C. Wang, C. X. Miao et al., Identification of common variants in BRCA2 and MAP2K4 for susceptibility to sporadic pancreatic cancer, Carcinogenesis, vol.34, issue.5, pp.1001-1005, 2013.
DOI : 10.1093/carcin/bgt004

F. Kastrinos, B. Mukherjee, N. Tayob, F. Wang, J. Sparr et al., Risk of Pancreatic Cancer in Families With Lynch Syndrome, JAMA, vol.302, issue.16, pp.1790-1795, 2009.
DOI : 10.1001/jama.2009.1529

X. Dong, Y. Li, K. Hess, J. Abbruzzese, and D. Li, DNA Mismatch Repair Gene Polymorphisms Affect Survival in Pancreatic Cancer, The Oncologist, vol.16, issue.1, pp.61-70, 2011.
DOI : 10.1634/theoncologist.2010-0127

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228057

N. Roberts, Y. Jiao, J. Yu, L. Kopelovich, G. Petersen et al., Mutations in Patients with Hereditary Pancreatic Cancer, Cancer Discovery, vol.2, issue.1, pp.41-46, 2012.
DOI : 10.1158/2159-8290.CD-11-0194

D. Thompson and D. Easton, Cancer Incidence in BRCA1 Mutation Carriers, CancerSpectrum Knowledge Environment, vol.94, issue.18, pp.1358-1365, 2002.
DOI : 10.1093/jnci/94.18.1358

J. Zhang, X. Zhang, I. Dhakal, M. Gross, F. Kadlubar et al., Sequence variants in antioxidant defense and DNA repair genes, dietary antioxidants, and pancreatic cancer risk, Int J Mol Epidemiol Genet, vol.2, pp.236-244, 2011.

M. Nakao, S. Hosono, H. Ito, M. Watanabe, N. Mizuno et al., Selected Polymorphisms of Base Excision Repair Genes and Pancreatic Cancer Risk in Japanese, Journal of Epidemiology, vol.22, issue.6, pp.477-483, 2012.
DOI : 10.2188/jea.JE20120010

H. Chen, B. Zhou, X. Lan, D. Wei, T. Yuan et al., Association between single-nucleotide polymorphisms of OGG1 gene and pancreatic cancer risk in Chinese Han population, Tumor Biology, vol.29, issue.1, pp.809-813, 2014.
DOI : 10.1007/s13277-013-1111-6

Y. Hori, K. Miyabe, M. Yoshida, T. Nakazawa, K. Hayashi et al., Impact of TP53 codon 72 and MDM2 SNP 309 polymorphisms in pancreatic ductal adenocarcinoma, PLos One, vol.10, p.118829, 2015.

E. Martinez, F. Silvy, F. Fina, M. Bartoli, M. Krahn et al., Rs488087 single nucleotide polymorphism as predictive risk factor for pancreatic cancers, Oncotarget, vol.6, pp.39855-39864, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01480288

D. Lombardo, Bile salt-dependent lipase: its pathophysiological implications, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1533, issue.1, pp.1-28, 2001.
DOI : 10.1016/S1388-1981(01)00130-5

U. Lidberg, J. Nilsson, K. Strömberg, G. Stenman, P. Sahlin et al., Genomic organization, sequence analysis, and chromosomal localization of the human car???yl ester lipase (CEL) gene and a CEL-like (CELL) gene, Genomics, vol.13, issue.3, pp.630-640, 1992.
DOI : 10.1016/0888-7543(92)90134-E

A. Taylor, J. Zambaux, I. Klisak, T. Mohandas, R. Sparkes et al., Carboxyl ester lipase: A highly polymorphic locus on human chromosome 9qter, Genomics, vol.10, issue.2, pp.425-431, 1991.
DOI : 10.1016/0888-7543(91)90328-C

J. Nilsson, L. Bläckberg, P. Carlsson, S. Enerbäck, and O. Hernell, cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase, European Journal of Biochemistry, vol.5, issue.2, pp.543-550, 1990.
DOI : 10.1016/0006-291X(89)91811-1

T. Baba, D. Downs, K. Jackson, J. Tang, and C. Wang, Structure of human milk bile salt activated lipase, Biochemistry, vol.30, issue.2, pp.500-510, 1991.
DOI : 10.1021/bi00216a028

C. Wang, A. Dashti, K. Jackson, J. Yeh, R. Cummings et al., Isolation and Characterization of Human Milk Bile Salt-Activated Lipase C-Tail Fragment, Biochemistry, vol.34, issue.33, pp.10639-10644, 1995.
DOI : 10.1021/bi00033a039

M. Strömqvist, O. Hernell, L. Hansson, K. Lindgren, A. Skytt et al., Naturally Occurring Variants of Human Milk Bile Salt-Stimulated Lipase, Archives of Biochemistry and Biophysics, vol.347, issue.1, pp.30-36, 1997.
DOI : 10.1006/abbi.1997.0307

J. Swan, M. Hoffman, M. Lord, and J. Poechmann, Two forms of human milk bile-salt-stimulated lipase, Biochemical Journal, vol.283, issue.1, pp.119-122, 1992.
DOI : 10.1042/bj2830119

A. Ragvin, K. Fjeld, F. Weiss, J. Torsvik, A. Aghdassi et al., The number of tandem repeats in the carboxyl-ester lipase (CEL) gene as a risk factor in alcoholic and idiopathic chronic pancreatitis, Pancreatology, vol.13, issue.1, pp.29-32, 2013.
DOI : 10.1016/j.pan.2012.12.059

N. Caillol, E. Pasqualini, E. Mas, A. Valette, A. Verine et al., Pancreatic bile salt-dependent lipase activity in serum of normolipidemic patients, Lipids, vol.8, issue.11, pp.1147-1153, 1997.
DOI : 10.1007/s11745-997-0147-4

P. Blind, M. Büchler, L. Bläckberg, Y. Andersson, W. Uhl et al., Carboxylic ester hydrolase. A sensitive serum marker and indicator of severity of acute pancreatitis, Int J Pancreatol, vol.8, pp.65-73, 1991.

N. Augé, O. Rebaï, J. Lepetit-thévenin, N. Bruneau, J. Thiers et al., Pancreatic Bile Salt-Dependent Lipase Induces Smooth Muscle Cells Proliferation, Circulation, vol.108, issue.1, pp.86-91, 2003.
DOI : 10.1161/01.CIR.0000079101.69806.47

O. Rebaï, L. Petit-thevenin, J. Bruneau, N. Lombardo, D. Vérine et al., In Vitro Angiogenic Effects of Pancreatic Bile Salt-Dependent Lipase, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.2, pp.359-364, 2005.
DOI : 10.1161/01.ATV.0000151618.49109.bd

R. Shamir, W. Johnson, K. Morlock-fitzpatrick, R. Zolfaghari, L. Li et al., Pancreatic carboxyl ester lipase: a circulating enzyme that modifies normal and oxidized lipoproteins in vitro., Journal of Clinical Investigation, vol.97, issue.7, pp.1696-1704, 1996.
DOI : 10.1172/JCI118596

J. Torsvik, S. Johansson, A. Johansen, J. Ek, J. Minton et al., Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes, Human Genetics, vol.34, issue.Pt 3, pp.55-64, 2010.
DOI : 10.1007/s00439-009-0740-8

H. Raeder, S. Johansson, P. Holm, I. Haldorsen, E. Mas et al., Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction, Nature Genetics, vol.276, issue.1, pp.54-62, 2006.
DOI : 10.1038/ng1708

H. Raeder, M. Vesterhus, E. Ouaamari, A. Paulo, J. Mcallister et al., Absence of Diabetes and Pancreatic Exocrine Dysfunction in a Transgenic Model of Carboxyl-Ester Lipase-MODY (Maturity-Onset Diabetes of the Young), PLoS ONE, vol.3, issue.4, p.60229, 2013.
DOI : 10.1371/journal.pone.0060229.s002

J. Torsvik, B. Johansson, M. Dalva, M. M. Fjeld, K. Johansson et al., Endocytosis of Secreted Carboxyl Ester Lipase in a Syndrome of Diabetes and Pancreatic Exocrine Dysfunction, Journal of Biological Chemistry, vol.289, issue.42, pp.29097-29111, 2014.
DOI : 10.1074/jbc.M114.574244

B. Johansson, J. Torsvik, L. Bjørkhaug, M. Vesterhus, A. Ragvin et al., Diabetes and Pancreatic Exocrine Dysfunction Due to Mutations in the Carboxyl Ester Lipase Gene-Maturity Onset Diabetes of the Young (CEL-MODY): A PROTEIN MISFOLDING DISEASE, Journal of Biological Chemistry, vol.286, issue.40, pp.34593-34605, 2011.
DOI : 10.1074/jbc.M111.222679

K. Fjeld, F. Weiss, D. Lasher, J. Rosendahl, J. Chen et al., A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis, Nature Genetics, vol.457, issue.5, pp.518-522, 2015.
DOI : 10.1016/j.jprot.2013.10.041

T. Kamisawa, L. Wood, T. Itoi, and K. Takaori, Pancreatic cancer, The Lancet, vol.388, issue.10039, pp.140-6736, 2016.
DOI : 10.1016/S0140-6736(16)00141-0

L. Panicot, E. Mas, C. Thivolet, and D. Lombardo, Circulating antibodies against an exocrine pancreatic enzyme in type 1 diabetes, Diabetes, vol.48, issue.12, pp.2316-2323, 1999.
DOI : 10.2337/diabetes.48.12.2316

A. Kirby, A. Gnirke, D. Jaffe, V. Bare?ová, N. Pochet et al., Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing, Nature Genetics, vol.44, issue.3, pp.299-303, 2013.
DOI : 10.1038/ng.768

B. Hindson, K. Ness, D. Masquelier, P. Belgrader, N. Heredia et al., High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number, Analytical Chemistry, vol.83, issue.22, pp.8604-8610, 2011.
DOI : 10.1021/ac202028g

Z. Sauna, C. Kimchi-sarfaty, S. Ambudkar, and M. Gottesman, Silent Polymorphisms Speak: How They Affect Pharmacogenomics and the Treatment of Cancer, Cancer Research, vol.67, issue.20, pp.9609-9612, 2007.
DOI : 10.1158/0008-5472.CAN-07-2377

O. Gautschi, D. Ratschiller, M. Gugger, D. Betticher, and J. Heighway, Cyclin D1 in non-small cell lung cancer: A key driver of malignant transformation, Lung Cancer, vol.55, issue.1, pp.1-14, 2007.
DOI : 10.1016/j.lungcan.2006.09.024

G. Lamolle, M. Marin, and F. Alvarez-valin, Silent mutations in the gene encoding the p53 protein are preferentially located in conserved amino acid positions and splicing enhancers, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.600, issue.1-2, pp.102-112, 2006.
DOI : 10.1016/j.mrfmmm.2006.03.004

L. Dipersio, C. Carter, and D. Hui, Exon 11 of the rat cholesterol esterase gene encodes domains important for intracellular processing and bile salt-modulated activity of the protein, Biochemistry, vol.33, issue.11, pp.3442-3448, 1994.
DOI : 10.1021/bi00177a038

P. Gaildrat, A. Killian, A. Martins, I. Tournier, T. Frébourg et al., Use of Splicing Reporter Minigene Assay to Evaluate the Effect on Splicing of Unclassified Genetic Variants, Methods Mol Biol, vol.653, pp.249-257, 2010.
DOI : 10.1007/978-1-60761-759-4_15

E. Collisson, A. Sadanandam, P. Olson, W. Gibb, M. Truitt et al., Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy, Nature Medicine, vol.63, issue.4, pp.500-503, 2011.
DOI : 10.1152/ajpcell.00225.2007

A. Kawesha, P. Ghaneh, A. Andrén-sandberg, D. Ograed, R. Skar et al., K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16INK4A, p21WAF-1, cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma, International Journal of Cancer, vol.118, issue.6, pp.469-474, 2000.
DOI : 10.1002/1097-0215(20001120)89:6<469::AID-IJC1>3.0.CO;2-L

P. Rachakonda, A. Bauer, H. Xie, D. Campa, C. Rizzato et al., Somatic Mutations in Exocrine Pancreatic Tumors: Association with Patient Survival, PLoS ONE, vol.44, issue.4, p.60870, 2012.
DOI : 10.1371/journal.pone.0060870.s006

P. Brest, P. Lapaquette, B. Mograbi, A. Darfeuille-michaud, and P. Hofman, Risk predisposition for Crohn disease: A ???m??nage ?? trois??? combining IRGM allele, miRNA and xenophagy, Autophagy, vol.7, issue.7, pp.786-787, 2011.
DOI : 10.4161/auto.7.7.15595