D. Lombardo, Bile salt-dependent lipase: its pathophysiological implications, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1533, issue.1, pp.1-28, 2001.
DOI : 10.1016/S1388-1981(01)00130-5

L. Bläckberg, D. Lombardo, O. Hernell, O. Guy, and T. Olivecrona, Bile salt-stimulated lipase in human milk and carboxyl ester hydrolase in pancreatic juice, FEBS Letters, vol.486, issue.2, pp.284-288, 1981.
DOI : 10.1016/0014-5793(81)80636-9

U. Lidberg, J. Nilsson, K. Strömberg, G. Stenman, P. Sahlin et al., Genomic organization, sequence analysis, and chromosomal localization of the human car???yl ester lipase (CEL) gene and a CEL-like (CELL) gene, Genomics, vol.13, issue.3, pp.630-640, 1992.
DOI : 10.1016/0888-7543(92)90134-E

A. Taylor, J. Zambaux, I. Klisak, T. Mohandas, R. Sparkes et al., Carboxyl ester lipase: A highly polymorphic locus on human chromosome 9qter, Genomics, vol.10, issue.2, pp.425-431, 1991.
DOI : 10.1016/0888-7543(91)90328-C

J. Nilsson, L. Bläckberg, P. Carlsson, S. Enerbäck, O. Hernell et al., cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase, European Journal of Biochemistry, vol.5, issue.2, pp.543-550, 1990.
DOI : 10.1016/0006-291X(89)91811-1

T. Baba, D. Downs, K. Jackson, J. Tang, and C. Wang, Structure of human milk bile salt activated lipase, Biochemistry, vol.30, issue.2, pp.500-510, 1991.
DOI : 10.1021/bi00216a028

C. Wang, A. Dashti, K. Jackson, J. Yeh, R. Cummings et al., Isolation and Characterization of Human Milk Bile Salt-Activated Lipase C-Tail Fragment, Biochemistry, vol.34, issue.33, pp.10639-10644, 1995.
DOI : 10.1021/bi00033a039

L. Dipersio, C. Carter, and D. Hui, Exon 11 of the rat cholesterol esterase gene encodes domains important for intracellular processing and bile salt-modulated activity of the protein, Biochemistry, vol.33, issue.11, pp.3442-3448, 1994.
DOI : 10.1021/bi00177a038

M. Strömqvist, O. Hernell, L. Hansson, K. Lindgren, A. Skytt et al., Naturally Occurring Variants of Human Milk Bile Salt-Stimulated Lipase, Archives of Biochemistry and Biophysics, vol.347, issue.1, pp.30-36, 1997.
DOI : 10.1006/abbi.1997.0307

J. Swan, M. Hoffman, M. Lord, and J. Poechmann, Two forms of human milk bile-salt-stimulated lipase, Biochemical Journal, vol.283, issue.1, pp.119-122, 1992.
DOI : 10.1042/bj2830119

D. Gjellesvik, J. Lorens, and R. Male, Pancreatic Carboxylester Lipase from Atlantic Salmon (Salmo salar). cDNA Sequence and Computer-Assisted Modelling of Tertiary Structure, European Journal of Biochemistry, vol.33, issue.2, pp.603-612, 1994.
DOI : 10.1016/0005-2760(91)90004-2

K. Madeyski, U. Lidberg, G. Bjursell, and J. Nilsson, Characterization of the gorilla carboxyl ester lipase locus, and the appearance of the carboxyl ester lipase pseudogene during primate evolution, Gene, vol.239, issue.2, pp.273-282, 1999.
DOI : 10.1016/S0378-1119(99)00410-2

A. Ragvin, K. Fjeld, F. Weiss, J. Torsvik, A. Aghdassi et al., The number of tandem repeats in the carboxyl-ester lipase (CEL) gene as a risk factor in alcoholic and idiopathic chronic pancreatitis, Pancreatology, vol.13, issue.1, pp.29-32, 2013.
DOI : 10.1016/j.pan.2012.12.059

P. Blind, M. Büchler, L. Bläckberg, Y. Andersson, W. Uhl et al., Carboxylic ester hydrolase. A sensitive serum marker and indicator of severity of acute pancreatitis, International Journal of Pancreatology, vol.8, pp.65-73, 1991.

N. Augé, O. Rebaï, J. Lepetit-thévenin, N. Bruneau, J. Thiers et al., Pancreatic Bile Salt-Dependent Lipase Induces Smooth Muscle Cells Proliferation, Circulation, vol.108, issue.1, pp.86-91, 2003.
DOI : 10.1161/01.CIR.0000079101.69806.47

O. Rebaï, L. Petit-thevenin, J. Bruneau, N. Lombardo, D. Vérine et al., In Vitro Angiogenic Effects of Pancreatic Bile Salt-Dependent Lipase, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.2, pp.359-364, 2005.
DOI : 10.1161/01.ATV.0000151618.49109.bd

N. Caillol, E. Pasqualini, E. Mas, A. Valette, A. Verine et al., Pancreatic bile salt-dependent lipase activity in serum of normolipidemic patients, Lipids, vol.8, issue.11, pp.1147-1153, 1997.
DOI : 10.1007/s11745-997-0147-4

R. Shamir, W. Johnson, K. Morlock-fitzpatrick, R. Zolfaghari, L. Li et al., Pancreatic carboxyl ester lipase: a circulating enzyme that modifies normal and oxidized lipoproteins in vitro., Journal of Clinical Investigation, vol.97, issue.7, pp.1696-1704, 1996.
DOI : 10.1172/JCI118596

L. Panicot, E. Mas, C. Thivolet, and D. Lombardo, Circulating antibodies against an exocrine pancreatic enzyme in type 1 diabetes, Diabetes, vol.48, issue.12, pp.2316-2323, 1999.
DOI : 10.2337/diabetes.48.12.2316

J. Torsvik, S. Johansson, A. Johansen, J. Ek, J. Minton et al., Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes, Human Genetics, vol.34, issue.Pt 3, pp.55-64, 2010.
DOI : 10.1007/s00439-009-0740-8

H. Raeder, S. Johansson, P. Holm, I. Haldorsen, E. Mas et al., Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction, Nature Genetics, vol.276, issue.1, pp.54-62, 2006.
DOI : 10.1038/ng1708

H. Raeder, M. Vesterhus, E. Ouaamari, A. Paulo, J. Mcallister et al., Absence of Diabetes and Pancreatic Exocrine Dysfunction in a Transgenic Model of Carboxyl-Ester Lipase-MODY (Maturity-Onset Diabetes of the Young), PLoS ONE, vol.3, issue.4, p.60229, 2013.
DOI : 10.1371/journal.pone.0060229.s002

J. Torsvik, B. Johansson, M. Dalva, M. M. Fjeld, K. Johansson et al., Endocytosis of Secreted Carboxyl Ester Lipase in a Syndrome of Diabetes and Pancreatic Exocrine Dysfunction, Journal of Biological Chemistry, vol.289, issue.42, pp.29097-29111, 2014.
DOI : 10.1074/jbc.M114.574244

B. Johansson, J. Torsvik, L. Bjørkhaug, M. Vesterhus, A. Ragvin et al., Diabetes and Pancreatic Exocrine Dysfunction Due to Mutations in the Carboxyl Ester Lipase Gene-Maturity Onset Diabetes of the Young (CEL-MODY): A PROTEIN MISFOLDING DISEASE, Journal of Biological Chemistry, vol.286, issue.40, pp.34593-34605, 2011.
DOI : 10.1074/jbc.M111.222679

K. Fjeld, F. Weiss, D. Lasher, J. Rosendahl, J. Chen et al., A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis, Nature Genetics, vol.457, issue.5, pp.518-522, 2015.
DOI : 10.1016/j.jprot.2013.10.041

J. Meyer, Lipolytic enzymes of the human pancreas. II. Purification and properties of cholesterol ester hydrolase, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1002, issue.1, pp.89-92, 1989.
DOI : 10.1016/0005-2760(89)90069-6

R. Duan and B. Borgström, Is there a specific lysophospholipase in human pancreatic juice?, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1167, issue.3, pp.326-330, 1993.
DOI : 10.1016/0005-2760(93)90236-3

E. Pasqualini, N. Caillol, L. Panicot, A. Valette, and D. Lombardo, Expression of a 70-kDa Immunoreactive Form of Bile Salt-Dependent Lipase by Human Pancreatic Tumoral Mia PaCa-2 Cells, Archives of Biochemistry and Biophysics, vol.375, issue.1, pp.90-100, 2000.
DOI : 10.1006/abbi.1999.1634

A. Kirby, A. Gnirke, D. Jaffe, V. Bare?ová, N. Pochet et al., Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing, Nature Genetics, vol.44, issue.3, pp.299-303, 2013.
DOI : 10.1038/ng.768

N. Caillol, E. Pasqualini, R. Lloubes, and D. Lombardo, Impairment of bile salt-dependent lipase secretion in human pancreatic tumoral SOJ-6 cells, Journal of Cellular Biochemistry, vol.264, issue.4, pp.628-647, 2000.
DOI : 10.1002/1097-4644(20001215)79:4<628::AID-JCB120>3.0.CO;2-T

E. Martinez, F. Silvy, F. Fina, M. Bartoli, M. Krahn et al., Rs488087 single nucleotide polymorphism as predictive risk factor for pancreatic cancers, Oncotarget, vol.6, pp.39855-39864, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01480288

L. Hansson, L. Bläckberg, M. Edlund, L. Lundberg, and M. Strömqvist, Recombinant human milk bile salt-stimulated lipase Catalytic activity is retained in the absence of glycosylation and the unique proline-rich repeats, Journal of Biological Chemistry, vol.268, pp.26692-26698, 1993.

L. Rahib, B. Smith, R. Aizenberg, A. Rosenzweig, J. Fleshman et al., Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States, Cancer Research, vol.74, issue.11, pp.2913-2921, 2014.
DOI : 10.1158/0008-5472.CAN-14-0155

A. Vincent, J. Herman, R. Schulick, R. Hruban, and M. Goggins, Pancreatic cancer, The Lancet, vol.378, issue.9791, pp.607-620, 2011.
DOI : 10.1016/S0140-6736(10)62307-0

URL : https://hal.archives-ouvertes.fr/hal-01429187

A. Lockhart, M. Rothenberg, and J. Berlin, Treatment for Pancreatic Cancer: Current Therapy and Continued Progress, Gastroenterology, vol.128, issue.6
DOI : 10.1053/j.gastro.2005.03.039

K. Pliarchopoulou and D. Pectasides, Pancreatic cancer: Current and future treatment strategies, Cancer Treatment Reviews, vol.35, issue.5, pp.431-436, 2009.
DOI : 10.1016/j.ctrv.2009.02.005

N. Jarufe, P. Mcmaster, A. Mayer, D. Mirza, J. Buckels et al., Surgical treatment of metastases to the pancreas, The Surgeon, vol.3, issue.2, pp.79-83, 2005.
DOI : 10.1016/S1479-666X(05)80066-6

J. Müller-nordhorn, S. Roll, M. Böhmig, M. Nocon, A. Reich et al., Health-Related Quality of Life in Patients with Pancreatic Cancer, Digestion, vol.74, issue.2, pp.118-125, 2006.
DOI : 10.1159/000098177

V. Smit, A. Boot, A. Smits, G. Fleuren, C. Cornelisse et al., KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas, Nucleic Acids Research, vol.16, issue.16, pp.7773-7782, 1988.
DOI : 10.1093/nar/16.16.7773

T. Chu, Molecular diagnosis of pancreas carcinoma, Journal of Clinical Laboratory Analysis, vol.89, issue.4, pp.225-231, 1997.
DOI : 10.1002/(SICI)1098-2825(1997)11:4<225::AID-JCLA9>3.0.CO;2-7

D. Bassères, A. Ebbs, E. Levantini, and A. Baldwin, Requirement of the NF-??B Subunit p65/RelA for K-Ras-Induced Lung Tumorigenesis, Cancer Research, vol.70, issue.9, pp.3537-3546, 2010.
DOI : 10.1158/0008-5472.CAN-09-4290

S. Lindquist, L. Bläckberg, and O. Hernell, Human bile salt-stimulated lipase has a high frequency of size variation due to a hypervariable region in exon 11, European Journal of Biochemistry, vol.97, issue.3, pp.759-767, 2002.
DOI : 10.1046/j.0014-2956.2001.02666.x

C. Tian, R. Kosoy, R. Nassir, A. Lee, P. Villoslada et al., European population genetic substructure: further definition of ancestry informative markers for distinguishing among diverse European ethnic groups, Mol Med, vol.15, pp.371-383, 2009.

M. Seldin, R. Shigeta, P. Villoslada, C. Selmi, J. Tuomilehto et al., European Population Substructure: Clustering of Northern and Southern Populations, PLoS Genetics, vol.13, issue.9, p.143, 2006.
DOI : 10.1371/journal.pgen.0020143.st001

D. Lombardo, G. Montalto, S. Roudani, E. Mas, R. Laugier et al., Is Bile Salt-Dependent Lipase Concentration in Serum of Any Help in Pancreatic Cancer Diagnosis?, Pancreas, vol.8, issue.5, pp.581-588, 1993.
DOI : 10.1097/00006676-199309000-00009

L. Benkoël, J. Bernard, M. Payan-defais, L. Crescence, C. Franceschi et al., Monoclonal antibody 16D10 to the COOH-terminal domain of the feto-acinar pancreatic protein targets pancreatic neoplastic tissues, Molecular Cancer Therapeutics, vol.8, issue.2, pp.282-291, 2009.
DOI : 10.1158/1535-7163.MCT-08-0471

D. Lombardo, O. Guy, and C. Figarella, Purification and characterization of a carboxyl ester hydrolase from human pancreatic juice, Biochimica et Biophysica Acta (BBA) - Enzymology, vol.527, issue.1, pp.142-149, 1978.
DOI : 10.1016/0005-2744(78)90263-2

E. Ristorcelli, E. Beraud, P. Verrando, C. Villard, D. Lafitte et al., Human tumor nanoparticles induce apoptosis of pancreatic cancer cells, The FASEB Journal, vol.22, issue.9, pp.3358-3369, 2008.
DOI : 10.1096/fj.07-102855