A. Fauci, Immunopathogenesis of HIV infection, J Acquir Immune Defic Syndr, vol.6, issue.6, pp.655-662, 1993.

L. Meyaard, S. Otto, R. Jonker, M. Mijnster, R. Keet et al., Programmed death of T cells in HIV-1 infection, Science, vol.257, issue.5067, pp.217-219, 1992.
DOI : 10.1126/science.1352911

H. Chang, F. Samaniego, B. Nair, L. Buonaguro, and B. Ensoli, HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region, AIDS, vol.11, issue.12, pp.111421-1431, 1997.
DOI : 10.1097/00002030-199712000-00006

B. Ensoli, L. Buonaguro, G. Barillari, V. Fiorelli, R. Gendelman et al., Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation, J Virol, vol.67, issue.1, pp.277-287, 1993.

A. Frankel and C. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus, Cell, vol.55, issue.6, pp.1189-1193, 1988.
DOI : 10.1016/0092-8674(88)90263-2

C. Dingwall, I. Ernberg, M. Gait, S. Green, S. Heaphy et al., HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure, Embo J, issue.912, pp.4145-4153, 1990.

A. Gatignol and K. Jeang, Tat as a transcriptional activator and a potential therapeutic target for HIV-I, Adv Pharmacol, vol.48, pp.209-227, 2000.
DOI : 10.1016/S1054-3589(00)48007-5

J. Karn and . Tat, Tackling tat, Journal of Molecular Biology, vol.293, issue.2, pp.235-254, 1999.
DOI : 10.1006/jmbi.1999.3060

S. Muller and C. Desgranges, HIV-1 Tat and apoptotic death (Chapter 9), in Cell death during HIV infection, 2006.

M. Westendorp, R. Frank, C. Ochsenbauer, K. Stricker, J. Dhein et al., Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120, Nature, vol.375, issue.6531, pp.375497-500, 1995.
DOI : 10.1038/375497a0

S. Flores, J. Marecki, K. Harper, S. Bose, S. Nelson et al., Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells., Proceedings of the National Academy of Sciences, vol.90, issue.16, pp.907632-7636, 1993.
DOI : 10.1073/pnas.90.16.7632

M. Westendorp, V. Shatrov, K. Schulze-osthoff, R. Frank, M. Kraft et al., HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state, Embo J, vol.14, issue.3, pp.546-554, 1995.

C. Li, D. Friedman, C. Wang, V. Metelev, and A. Pardee, Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein, Science, vol.268, issue.5209, pp.429-431, 1995.
DOI : 10.1126/science.7716549

G. Campbell, E. Pasquier, J. Watkins, V. Bourgarel-rey, V. Peyrot et al., The Glutamine-rich Region of the HIV-1 Tat Protein Is Involved in T-cell Apoptosis, Journal of Biological Chemistry, vol.279, issue.46
DOI : 10.1074/jbc.M406195200

D. Chen, M. Wang, S. Zhou, and Q. Zhou, HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim, The EMBO Journal, vol.21, issue.24, pp.6801-6810, 2002.
DOI : 10.1093/emboj/cdf683

J. De-mareuil, M. Carre, P. Barbier, G. Campbell, S. Lancelot et al., HIV-1 Tat protein enhances microtubule polymerization, Retrovirology, vol.2, issue.1, p.5, 2005.
DOI : 10.1186/1742-4690-2-5

P. Battaglia, S. Zito, A. Macchini, and F. Gigliani, A Drosophila model of HIV-Tat-related pathogenicity, J Cell Sci, vol.114, pp.2787-2794, 2001.

M. Giacca, HIV-1 Tat, apoptosis and the mitochondria: a tubulin link? Retrovirology, p.7, 2005.

A. Frankel, D. Bredt, and C. Pabo, Tat protein from human immunodeficiency virus forms a metal-linked dimer, Science, vol.240, issue.4848, pp.70-73, 1988.
DOI : 10.1126/science.2832944

A. Frankel, L. Chen, R. Cotter, and C. Pabo, Dimerization of the tat protein from human immunodeficiency virus: a cysteine-rich peptide mimics the normal metal-linked dimer interface., Proceedings of the National Academy of Sciences, vol.85, issue.17, pp.856297-6300, 1988.
DOI : 10.1073/pnas.85.17.6297

H. Huang and K. Wang, Structural Characterization of the Metal Binding Site in the Cysteine-Rich Region of HIV-1 Tat Protein, Biochemical and Biophysical Research Communications, vol.227, issue.2, pp.615-621, 1996.
DOI : 10.1006/bbrc.1996.1554

C. Gregoire, J. Peloponese, . Jr, D. Esquieu, S. Opi et al., Homonuclear (1)H-NMR assignment and structural characterization of human immunodeficiency virus type 1 Tat Mal protein, Biopolymers, issue.6, pp.62324-335, 2001.

M. Kuppuswamy, T. Subramanian, A. Srinivasan, and G. Chinnadurai, -activator of HIV-1, defined by mutational analysis, Nucleic Acids Research, vol.17, issue.9, pp.3551-3561, 1989.
DOI : 10.1093/nar/17.9.3551

S. Koken, A. Greijer, K. Verhoef, J. Van-wamel, A. Bukrinskaya et al., Intracellular analysis of in vitro modified HIV Tat protein, J Biol Chem, vol.269, issue.11, pp.8366-8375, 1994.

M. Garber, P. Wei, V. Kewalramani, T. Mayall, C. Herrmann et al., The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein, Genes & Development, vol.12, issue.22, pp.123512-3527, 1998.
DOI : 10.1101/gad.12.22.3512

S. Misumi, N. Takamune, Y. Ohtsubo, K. Waniguchi, and S. Shoji, Binding to Cysteine-Rich Domain of Extracellular Human Immunodeficiency Virus Type 1 Tat Protein Is Associated with Tat Protein-Induced Apoptosis, AIDS Research and Human Retroviruses, vol.20, issue.3, pp.297-304, 2004.
DOI : 10.1089/088922204322996536

O. Chaloin, J. Peter, J. Briand, B. Masquida, C. Desgranges et al., The N-terminus of HIV-1 Tat protein is essential for Tat-TAR RNA interaction, CMLS Cellular and Molecular Life Sciences, vol.62, issue.3, pp.62355-361, 2005.
DOI : 10.1007/s00018-004-4477-1

G. Ellman, Tissue sulfhydryl groups, Archives of Biochemistry and Biophysics, vol.82, issue.1, pp.70-77, 1959.
DOI : 10.1016/0003-9861(59)90090-6

P. Riddles, R. Blakeley, and B. Zerner, [8] Reassessment of Ellman's reagent, Methods Enzymol, vol.91, pp.49-60, 1983.
DOI : 10.1016/S0076-6879(83)91010-8

J. Azoulay, J. Clamme, J. Darlix, B. Roques, and Y. Mely, Destabilization of the HIV-1 Complementary Sequence of TAR by the Nucleocapsid Protein Through Activation of Conformational Fluctuations, Journal of Molecular Biology, vol.326, issue.3, pp.691-700, 2003.
DOI : 10.1016/S0022-2836(02)01430-4

J. Clamme, J. Azoulay, and Y. Mely, Monitoring of the Formation and Dissociation of Polyethylenimine/DNA Complexes by Two Photon Fluorescence Correlation Spectroscopy, Biophysical Journal, vol.84, issue.3, pp.1960-1968, 2003.
DOI : 10.1016/S0006-3495(03)75004-8

N. Thompson, Fluorescence correlation spectroscopy, in Topics in fluorescence spectroscopy, 1991.

C. Egele, E. Schaub, E. Piemont, H. De-rocquigny, and Y. Mely, Investigation by fluorescence correlation spectroscopy of the chaperoning interactions of HIV-1 nucleocapsid protein with the viral DNA initiation sequences, C R Biol, issue.12, pp.3281041-1051, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00129852

E. Bombarda, A. Ababou, C. Vuilleumier, D. Gerard, B. Roques et al., Time-Resolved Fluorescence Investigation of the Human Immunodeficiency Virus Type 1 Nucleocapsid Protein: Influence of the Binding of Nucleic Acids, Biophysical Journal, vol.76, issue.3, pp.1561-1570, 1999.
DOI : 10.1016/S0006-3495(99)77315-7

Y. Mely, N. Jullian, N. Morellet, D. Rocquigny, H. Dong et al., Spatial Proximity of the HIV-1 Nucleocapsid Protein Zinc Fingers Investigated by Time-Resolved Fluorescence and Fluorescence Resonance Energy Transfer, Biochemistry, vol.33, issue.40, pp.3312085-12091, 1994.
DOI : 10.1021/bi00206a011

A. Livesey and J. Brochon, Analyzing the Distribution of Decay Constants in Pulse-Fluorimetry Using the Maximum Entropy Method, Biophysical Journal, vol.52, issue.5, pp.693-706, 1987.
DOI : 10.1016/S0006-3495(87)83264-2

J. Andreu, J. Diaz, R. Gil, J. De-pereda, G. De-lacoba et al., Solution structure of Taxotere-induced microtubules to 3-nm resolution. The change in protofilament number is linked to the binding of the taxol side chain, J Biol Chem, issue.50, pp.26931785-31792, 1994.

J. Lee, R. Frigon, and S. Timasheff, The chemical characterization of calf brain microtubule protein subunits, J Biol Chem, vol.248, issue.20, pp.7253-7262, 1973.

R. Weisenberg, G. Borisy, and E. Taylor, Colchicine-binding protein of mammalian brain and its relation to microtubules, Biochemistry, vol.7, issue.12, pp.4466-4479, 1968.
DOI : 10.1021/bi00852a043

P. Schuck and P. Rossmanith, Determination of the sedimentation coefficient distribution by least-squares boundary modeling, Biopolymers, vol.240, issue.5, pp.328-341, 2000.
DOI : 10.1002/1097-0282(20001015)54:5<328::AID-BIP40>3.0.CO;2-P

J. Lakowicz, Principles of fluorescence spectroscopy, NY, 1999.
DOI : 10.1007/978-0-387-46312-4

F. Devred, P. Barbier, S. Douillard, O. Monasterio, J. Andreu et al., Tau induces ring and microtubule formation from alphabeta-tubulin dimers under nonassembly conditions, Biochemistry, issue.32, pp.4310520-10531, 2004.
DOI : 10.1021/bi0493160

W. Howard and S. Timasheff, GDP state of tubulin: stabilization of double rings, Biochemistry, vol.25, issue.25, pp.8292-8300, 1986.
DOI : 10.1021/bi00373a025

E. Nogales, H. Wang, and H. Niederstrasser, Tubulin rings: which way do they curve?, Current Opinion in Structural Biology, vol.13, issue.2, pp.256-261, 2003.
DOI : 10.1016/S0959-440X(03)00029-0

O. Valiron, N. Caudron, and J. D. , Microtubule dynamics, Cellular and Molecular Life Sciences, vol.58, issue.14, pp.2069-2084, 2001.
DOI : 10.1007/PL00000837

F. Devred, S. Douillard, C. Briand, and V. Peyrot, First tau repeat domain binding to growing and taxol-stabilized microtubules, and serine 262 residue phosphorylation, FEBS Letters, vol.16, issue.1-3, pp.1-3247, 2002.
DOI : 10.1016/S0014-5793(02)02999-X

F. Gaskin, In vitro microtubule assembly regulation by divalent cations and nucleotides, Biochemistry, vol.20, issue.5, pp.1318-1322, 1981.
DOI : 10.1021/bi00508a043

F. Gaskin and Y. Kress, Zinc ion-induced assembly of tubulin, J Biol Chem, vol.252, issue.19, pp.6918-6924, 1977.

E. Nogales, S. Wolf, S. Zhang, and K. Downing, Preservation of 2-D Crystals of Tubulin for Electron Crystallography, Journal of Structural Biology, vol.115, issue.2, pp.199-208, 1995.
DOI : 10.1006/jsbi.1995.1044

K. Jeang, H. Xiao, and E. Rich, Multifaceted Activities of the HIV-1 Transactivator of Transcription, Tat, Journal of Biological Chemistry, vol.274, issue.41, pp.28837-28840, 1999.
DOI : 10.1074/jbc.274.41.28837

J. Peloponese, . Jr, Y. Collette, C. Gregoire, C. Bailly et al., Full Peptide Synthesis, Purification, and Characterization of Six Tat Variants: DIFFERENCES OBSERVED BETWEEN HIV-1 ISOLATES FROM AFRICA AND OTHER CONTINENTS, Journal of Biological Chemistry, vol.274, issue.17, pp.27411473-11478, 1999.
DOI : 10.1074/jbc.274.17.11473

S. Pantano and P. Carloni, Comparative analysis of HIV-1 Tat variants, Proteins: Structure, Function, and Bioinformatics, vol.21, issue.3, pp.638-643, 2005.
DOI : 10.1002/prot.20323

S. Shojania, O. Neil, and J. , HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1

J. Peloponese, . Jr, C. Gregoire, S. Opi, D. Esquieu et al., 1H-13C nuclear magnetic resonance assignment and structural characterization of HIV-1 Tat protein, Comptes Rendus de l'Acad??mie des Sciences - Series III - Sciences de la Vie, vol.323, issue.10, pp.323883-894, 2000.
DOI : 10.1016/S0764-4469(00)01228-2

B. Berne, Interpretation of the light scattering from long rods, Journal of Molecular Biology, vol.89, issue.4, pp.755-758, 1974.
DOI : 10.1016/0022-2836(74)90049-7

F. Gaskin, [41] Techniques for the study of microtubule assembly in vitro, Methods Enzymol, vol.85, pp.433-439, 1982.
DOI : 10.1016/0076-6879(82)85043-X

S. Stoylov, C. Vuilleumier, E. Stoylova, D. Rocquigny, H. Roques et al., Ordered aggregation of ribonucleic acids by the human immunodeficiency virus type 1 nucleocapsid protein, Biopolymers, issue.3, pp.41301-312, 1997.

S. Horwitz, Taxol (paclitaxel): mechanisms of action, Ann Oncol, vol.5, issue.6, pp.3-6, 1994.

M. Jordan, Mechanism of Action of Antitumor Drugs that Interact with Microtubules and Tubulin, Current Medicinal Chemistry-Anti-Cancer Agents, vol.2, issue.1, pp.1-17, 2002.
DOI : 10.2174/1568011023354290

N. Kumar, Taxol-induced polymerization of purified tubulin. Mechanism of action, J Biol Chem, vol.256, issue.20, pp.10435-10441, 1981.

J. Diaz and J. Andreu, Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: Reversibility, ligand stoichiometry, and competition, Biochemistry, vol.32, issue.11, pp.2747-2755, 1993.
DOI : 10.1021/bi00062a003

H. Xiao, C. Neuveut, H. Tiffany, M. Benkirane, E. Rich et al., Selective CXCR4 antagonism by Tat: Implications for in vivo expansion of coreceptor use by HIV-1, Proceedings of the National Academy of Sciences, vol.97, issue.21, pp.9711466-11471, 2000.
DOI : 10.1073/pnas.97.21.11466

N. Hirokawa, Microtubule organization and dynamics dependent on microtubule-associated proteins, Current Opinion in Cell Biology, vol.6, issue.1, pp.74-81, 1994.
DOI : 10.1016/0955-0674(94)90119-8