R. Xavier and D. Podolsky, Unravelling the pathogenesis of inflammatory bowel disease, Nature, vol.124, issue.7152, pp.427-434, 2007.
DOI : 10.1038/nature06005

D. Gevers, S. Kugathasan, and L. Denson, The Treatment-Naive Microbiome in New-Onset Crohn???s Disease, Cell Host & Microbe, vol.15, issue.3, pp.382-392, 2014.
DOI : 10.1016/j.chom.2014.02.005

W. Garrett, C. Gallini, and T. Yatsunenko, Enterobacteriaceae Act in Concert with the Gut Microbiota to Induce Spontaneous and Maternally Transmitted Colitis, Cell Host & Microbe, vol.8, issue.3, pp.292-300, 2010.
DOI : 10.1016/j.chom.2010.08.004

R. Kotlowski, C. Bernstein, and S. Sepehri, High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease, Gut, vol.56, issue.5, pp.669-675, 2007.
DOI : 10.1136/gut.2006.099796

J. Dicksved, J. Halfvarson, and M. Rosenquist, Molecular analysis of the gut microbiota of identical twins with Crohn's disease, The ISME Journal, vol.64, issue.7, pp.716-727, 2008.
DOI : 10.1038/ismej.2008.37

B. Willing, J. Halfvarson, and J. Dicksved, Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn??s disease, Inflammatory Bowel Diseases, vol.15, issue.5, pp.653-660, 2009.
DOI : 10.1002/ibd.20783

H. Sokol, B. Pigneur, and L. Watterlot, Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients, Proceedings of the National Academy of Sciences, vol.105, issue.43, pp.16731-16736, 2008.
DOI : 10.1073/pnas.0804812105

URL : https://hal.archives-ouvertes.fr/hal-00652961

J. Nash, A. Villegas, and A. Kropinski, Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes, BMC Genomics, vol.11, issue.1, pp.667-681, 2010.
DOI : 10.1186/1471-2164-11-667

A. Darfeuille-michaud, J. Boudeau, and P. Bulois, High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn???s disease, Gastroenterology, vol.127, issue.2, pp.412-421, 2004.
DOI : 10.1053/j.gastro.2004.04.061

C. Neut, P. Bulois, and P. Desreumaux, Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn's disease, The American Journal of Gastroenterology, vol.119, issue.4, pp.939-946, 2002.
DOI : 10.1023/A:1026632704628

N. Barnich, F. Carvalho, and A. Glasser, CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease, Journal of Clinical Investigation, vol.117, issue.6, pp.1566-1574, 2007.
DOI : 10.1172/JCI30504

A. Glasser, J. Boudeau, and N. Barnich, Adherent Invasive Escherichia coli Strains from Patients with Crohn's Disease Survive and Replicate within Macrophages without Inducing Host Cell Death, Infection and Immunity, vol.69, issue.9, pp.5529-5537, 2001.
DOI : 10.1128/IAI.69.9.5529-5537.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC98666

F. Carvalho, N. Barnich, and A. Sivignon, colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM, The Journal of Experimental Medicine, vol.56, issue.10, pp.2179-2189, 2009.
DOI : 10.1371/journal.pone.0002040

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757893

M. Bringer, N. Barnich, and A. Glasser, HtrA Stress Protein Is Involved in Intramacrophagic Replication of Adherent and Invasive Escherichia coli Strain LF82 Isolated from a Patient with Crohn's Disease, Infection and Immunity, vol.73, issue.2, pp.712-721, 2005.
DOI : 10.1128/IAI.73.2.712-721.2005

P. Vignais, The superoxide-generating NADPH oxidase: structural aspects and activation mechanism, Cellular and Molecular Life Sciences (CMLS), vol.59, issue.9, pp.1428-1459, 2002.
DOI : 10.1007/s00018-002-8520-9

A. Keshavarzian, S. Sedghi, and J. Kanofsky, Excessive production of reactive oxygen metabolites by inflamed colon: Analysis by chemiluminescence probe, Gastroenterology, vol.103, issue.1, pp.177-185, 1992.
DOI : 10.1016/0016-5085(92)91111-G

J. Lambeth, NOX enzymes and the biology of reactive oxygen, Nature Reviews Immunology, vol.275, issue.3, pp.181-189, 2004.
DOI : 10.1038/nri1312

N. Buchon, N. Broderick, and S. Chakrabarti, Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila, Genes & Development, vol.23, issue.19, pp.2333-2344, 2009.
DOI : 10.1101/gad.1827009

B. Banfi, A. Maturana, and S. Jaconi, A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1, Science, vol.287, pp.138-142, 2000.

H. Kikuchi, M. Hikage, and H. Miyashita, NADPH oxidase subunit, gp91phox homologue, preferentially expressed in human colon epithelial cells, Gene, vol.254, issue.1-2, pp.237-243, 2000.
DOI : 10.1016/S0378-1119(00)00258-4

E. Hassani, R. Benfares, N. Caillou, and B. , Dual oxidase2 is expressed all along the digestive tract, AJP: Gastrointestinal and Liver Physiology, vol.288, issue.5, pp.933-942, 2005.
DOI : 10.1152/ajpgi.00198.2004

M. Kamizato, K. Nishida, and K. Masuda, Interleukin 10 inhibits interferon ??- and tumor necrosis factor ??-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon, Journal of Gastroenterology, vol.19, issue.12, pp.1172-1184, 2009.
DOI : 10.1007/s00535-009-0119-6

R. Esworthy, B. Kim, and J. Chow, Nox1 causes ileocolitis in mice deficient in glutathione peroxidase-1 and -2, Free Radical Biology and Medicine, vol.68, pp.315-325, 2014.
DOI : 10.1016/j.freeradbiomed.2013.12.018

Y. Haberman, T. Tickle, and P. Dexheimer, Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature, Journal of Clinical Investigation, vol.124, issue.8, pp.3617-3633, 2014.
DOI : 10.1172/JCI75436DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109533

M. Debbabi, Y. Kroviarski, and O. Bournier, NOXO1 phosphorylation on serine 154 is critical for optimal NADPH oxidase 1 assembly and activation, The FASEB Journal, vol.27, issue.4, pp.1733-1748, 2013.
DOI : 10.1096/fj.12-216432

M. Geiszt, J. Witta, and J. Baffi, Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense, The FASEB Journal, vol.17, pp.1502-1504, 2003.
DOI : 10.1096/fj.02-1104fje

J. Boudeau, N. Barnich, and A. Darfeuille-michaud, Type 1 pili-mediated adherence of Escherichia coli strain LF82 isolated from Crohn's disease is involved in bacterial invasion of intestinal epithelial cells, Molecular Microbiology, vol.58, issue.5, pp.1272-1284, 2001.
DOI : 10.1111/j.1365-2958.2001.02315.x

Y. Xue, H. Zhang, and H. Wang, Host Inflammatory Response Inhibits Escherichia coli O157:H7 Adhesion to Gut Epithelium through Augmentation of Mucin Expression, Infection and Immunity, vol.82, issue.5, pp.1921-1930, 2014.
DOI : 10.1128/IAI.01589-13

A. Darfeuille-michaud, Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn's disease, International Journal of Medical Microbiology, vol.292, issue.3-4, pp.185-193, 2002.
DOI : 10.1078/1438-4221-00201

T. Eaves-pyles, C. Allen, and J. Taormina, Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells, International Journal of Medical Microbiology, vol.298, issue.5-6, pp.397-409, 2008.
DOI : 10.1016/j.ijmm.2007.05.011

N. Simmonds, R. Allen, and T. Stevens, Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease, Gastroenterology, vol.103, issue.1, pp.186-196, 1992.
DOI : 10.1016/0016-5085(92)91112-H

A. Perner, L. Andresen, and G. Pedersen, Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells, Gut, vol.52, issue.2, pp.231-236, 2003.
DOI : 10.1136/gut.52.2.231

Y. Kuwano, K. Tominaga, and T. Kawahara, Tumor necrosis factor ?? activates transcription of the NADPH oxidase organizer 1 (NOXO1) gene and upregulates superoxide production in colon epithelial cells, Free Radical Biology and Medicine, vol.45, issue.12, pp.1642-1652, 2008.
DOI : 10.1016/j.freeradbiomed.2008.08.033

Y. Kroviarski, M. Debbabi, and R. Bachoual, Phosphorylation of NADPH oxidase activator 1 (NOXA1) on serine 282 by MAP kinases and on serine 172 by protein kinase C and protein kinase A prevents NOX1 hyperactivation, The FASEB Journal, vol.24, issue.6, pp.2077-2092, 2010.
DOI : 10.1096/fj.09-147629

N. Corcionivoschi, L. Alvarez, and T. Sharp, Mucosal Reactive Oxygen Species Decrease Virulence by Disrupting Campylobacter jejuni Phosphotyrosine Signaling, Cell Host & Microbe, vol.12, issue.1, pp.47-59, 2012.
DOI : 10.1016/j.chom.2012.05.018

URL : http://doi.org/10.1016/j.chom.2012.05.018

T. Kawahara, M. Kohjima, and Y. Kuwano, Helicobacter pylori lipopolysaccharide activates Rac1 and transcription of NADPH oxidase Nox1 and its organizer NOXO1 in guinea pig gastric mucosal cells, AJP: Cell Physiology, vol.288, issue.2, pp.450-457, 2005.
DOI : 10.1152/ajpcell.00319.2004

A. Negroni, M. Costanzo, and R. Vitali, Characterization of adherent-invasive Escherichia coli isolated from pediatric patients with inflammatory bowel disease, Inflammatory Bowel Diseases, vol.18, issue.5, pp.913-924, 2012.
DOI : 10.1002/ibd.21899

M. Johansson, Mucus Layers in Inflammatory Bowel Disease, Inflammatory Bowel Diseases, vol.20, issue.11, pp.2124-2131, 2014.
DOI : 10.1097/MIB.0000000000000117

M. Van-der-sluis, D. Koning, B. , D. Bruijn, and A. , Muc2-Deficient Mice Spontaneously Develop Colitis, Indicating That MUC2 Is Critical for Colonic Protection, Gastroenterology, vol.131, issue.1, pp.117-129, 2006.
DOI : 10.1053/j.gastro.2006.04.020

C. Moehle, N. Ackermann, and T. Langmann, Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease, Journal of Molecular Medicine, vol.99, issue.Pt 3, pp.1055-1066, 2006.
DOI : 10.1007/s00109-006-0100-2

M. Martinez-medina, J. Denizot, and N. Dreux, alters host barrier function favouring AIEC colonisation, Gut, vol.52, issue.1, pp.116-124, 2014.
DOI : 10.1136/gutjnl-2012-304119

URL : http://gut.bmj.com/cgi/content/short/gutjnl-2012-304119v1

M. Perrais, C. Rousseaux, and M. Ducourouble, Helicobacter pylori urease and flagellin alter mucin gene expression in human gastric cancer cells, Gastric Cancer, vol.7, issue.5, pp.235-246, 2014.
DOI : 10.1007/s10120-013-0267-5

F. Yan, W. Li, and H. Jono, Reactive oxygen species regulate Pseudomonas aeruginosa lipopolysaccharide-induced MUC5AC mucin expression via PKC-NADPH oxidase-ROS-TGF-?? signaling pathways in human airway epithelial cells, Biochemical and Biophysical Research Communications, vol.366, issue.2, pp.513-519, 2008.
DOI : 10.1016/j.bbrc.2007.11.172

A. Kumar, H. Wu, and L. Collier-hyams, Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species, The EMBO Journal, vol.4, issue.21, pp.4457-4466, 2007.
DOI : 10.1038/sj.emboj.7601867