I. Bertini, G. Cavallero, and K. Mcgreevy, Cellular copper management???a draft user's guide, Coordination Chemistry Reviews, vol.254, issue.5-6, pp.506-524, 2010.
DOI : 10.1016/j.ccr.2009.07.024

L. Ryden and L. Hunt, Evolution of protein complexity: The blue copper-containing oxidases and related proteins, Journal of Molecular Evolution, vol.312, issue.1, pp.41-66, 1993.
DOI : 10.1146/annurev.iy.06.040188.002121

J. Gough and C. Chothia, The Linked Conservation of Structure and Function in a Family of High Diversity, Structure, vol.12, issue.6, pp.917-925, 2004.
DOI : 10.1016/j.str.2004.03.029

C. Dennison, Investigating the structure and function of cupredoxins, Coordination Chemistry Reviews, vol.249, issue.24, pp.3025-3054, 2005.
DOI : 10.1016/j.ccr.2005.04.021

E. Adman, Copper Protein Structures, Adv Protein Chem, vol.42, pp.145-197, 1991.
DOI : 10.1016/S0065-3233(08)60536-7

O. Farver and I. Pecht, Electron transfer in blue copper proteins, Coordination Chemistry Reviews, vol.255, issue.7-8, pp.757-773, 2011.
DOI : 10.1016/j.ccr.2010.08.005

F. Arnesano, L. Banci, I. Bertini, and A. Thompsett, Solution Structure of CopC, Structure, vol.10, issue.10, pp.1337-1347, 2002.
DOI : 10.1016/S0969-2126(02)00858-4

URL : http://doi.org/10.1016/s0969-2126(02)00858-4

F. Arnesano, L. Banci, I. Bertini, S. Mangani, and A. Thompsett, A redox switch in CopC: An intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites, Proceedings of the National Academy of Sciences, vol.14, issue.1, pp.3814-3819, 2003.
DOI : 10.1016/0263-7855(96)00009-4

L. Zhang, M. Koay, M. Maher, Z. Xiao, and A. Wedd, Forms, Journal of the American Chemical Society, vol.128, issue.17, pp.5834-5850, 2006.
DOI : 10.1021/ja058528x

URL : https://hal.archives-ouvertes.fr/hal-00163774

Y. Fu, H. Tsui, K. Bruce, L. Sham, and K. Higgins, A new structural paradigm in copper resistance in Streptococcus pneumoniae, Nature Chemical Biology, vol.16, issue.3, pp.177-183, 2013.
DOI : 10.1021/ja068505y

E. Solomon, Spectroscopic Methods in Bioinorganic Chemistry:?? Blue to Green to Red Copper Sites, Inorganic Chemistry, vol.45, issue.20, pp.8012-8025, 2006.
DOI : 10.1021/ic060450d

E. Solomon and R. Hadt, Recent advances in understanding blue copper proteins, Coordination Chemistry Reviews, vol.255, issue.7-8, pp.774-789, 2011.
DOI : 10.1016/j.ccr.2010.12.008

M. Choi and V. Davidson, Cupredoxins???A study of how proteins may evolve to use metals for bioenergetic processes, Metallomics, vol.42, issue.2, pp.140-151, 2011.
DOI : 10.1021/bi0271594

A. Donaire, B. Jimenez, C. Fernandez, R. Pierattelli, and T. Niizeki, H NMR Spectroscopy:?? Cu(II)???Pseudoazurin and Cu(II)???Rusticyanin, Journal of the American Chemical Society, vol.124, issue.46, pp.13698-13708, 2002.
DOI : 10.1021/ja0267019

L. Lacroix, S. Shadle, Y. Wang, B. Averill, and B. Hedman, Electronic Structure of the Perturbed Blue Copper Site in Nitrite Reductase:?? Spectroscopic Properties, Bonding, and Implications for the Entatic/Rack State, Journal of the American Chemical Society, vol.118, issue.33, pp.7755-7768, 1996.
DOI : 10.1021/ja961217p

E. Solomon, R. Szilagyi, D. George, S. Basumallick, and L. , Electronic Structures of Metal Sites in Proteins and Models:?? Contributions to Function in Blue Copper Proteins, Chemical Reviews, vol.104, issue.2, pp.419-458, 2004.
DOI : 10.1021/cr0206317

S. Kroes, C. Hoitink, C. Andrew, A. J. Sanders-loehr, and J. , The Mutation Met121His Creates a Type-1.5 Copper Site in Alcaligenes denitrificans Azurin, European Journal of Biochemistry, vol.234, issue.2, pp.342-351, 1996.
DOI : 10.1016/0378-1119(85)90120-9

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1432-1033.1996.0342h.x/pdf

K. Clark, Y. Yu, N. Marshall, N. Sieracki, and M. Nilges, Transforming a Blue Copper into a Red Copper Protein: Engineering Cysteine and Homocysteine into the Axial Position of Azurin Using Site-Directed Mutagenesis and Expressed Protein Ligation, Journal of the American Chemical Society, vol.132, issue.29, pp.10093-10101, 2010.
DOI : 10.1021/ja102632p

M. Hay, J. Richards, and Y. Lu, Construction and characterization of an azurin analog for the purple copper site in cytochrome c oxidase., Proceedings of the National Academy of Sciences, vol.93, issue.1, pp.461-464, 1996.
DOI : 10.1073/pnas.93.1.461

L. Jones, A. Liu, and V. Davidson, Amicyanin Capable of Intermolecular Electron Transfer Reactions, Journal of Biological Chemistry, vol.209, issue.47, pp.47269-47274, 2003.
DOI : 10.1107/S0907444996001072

URL : http://www.jbc.org/content/278/47/47269.full.pdf

M. Ilbert and V. Bonnefoy, Insight into the evolution of the iron oxidation pathways, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.2, pp.161-175, 2013.
DOI : 10.1016/j.bbabio.2012.10.001

M. Roger, A. De-poulpiquet, A. Ciaccafava, M. Ilbert, and M. Guiral, Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production, Analytical and Bioanalytical Chemistry, vol.45, issue.6, pp.1011-1027, 2014.
DOI : 10.1016/j.watres.2011.07.011

URL : https://hal.archives-ouvertes.fr/hal-01493475

W. Ingledew, Thiobacillus Ferrooxidans the bioenergetics of an acidophilic chemolithotroph, Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, vol.683, issue.2, pp.89-117, 1982.
DOI : 10.1016/0304-4173(82)90007-6

C. Castelle, M. Ilbert, P. Infossi, G. Leroy, and M. Giudici-orticoni, Oxidase Respiratory Function under Extreme Acidic Conditions, Journal of Biological Chemistry, vol.1787, issue.28, pp.21519-21525, 2010.
DOI : 10.1073/pnas.0811811106

URL : https://hal.archives-ouvertes.fr/hal-00677655

L. Alcaraz, J. Gomez, P. Ramirez, J. Calvente, and R. Andreu, Folding and Unfolding in the Blue Copper Protein Rusticyanin: Role of the Oxidation State, Bioinorganic Chemistry and Applications, vol.65, issue.11, p.54232, 2007.
DOI : 10.1074/jbc.274.43.30365

J. Grossmann, W. Ingledew, I. Harvey, R. Strange, and S. Hasnain, X-ray absorption studies and homology modeling define the structural features that specify the nature of the copper site in rusticyanin, Biochemistry, vol.34, issue.26, pp.8406-8414, 1995.
DOI : 10.1021/bi00026a023

M. Botuyan, A. Toy-palmer, J. Chung, R. Blake, and P. Beroza, NMR Solution Structure of Cu(I) Rusticyanin fromThiobacillus ferrooxidans: Structural Basis for the Extreme Acid Stability and Redox Potential, Journal of Molecular Biology, vol.263, issue.5, pp.752-767, 1996.
DOI : 10.1006/jmbi.1996.0613

F. Nunzi, F. Guerlesquin, W. Shepard, B. Guigliarelli, and M. Bruschi, Active Site Geometry in the High Oxido-reduction Potential Rusticyanin from Thiobacillus ferrooxidans, Biochemical and Biophysical Research Communications, vol.203, issue.3, pp.1655-1662, 1994.
DOI : 10.1006/bbrc.1994.2376

M. Pereira, M. Santana, and M. Teixeira, A novel scenario for the evolution of haem???copper oxygen reductases, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1505, issue.2-3, pp.185-208, 2001.
DOI : 10.1016/S0005-2728(01)00169-4

S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, Journal of Magnetic Resonance, vol.178, issue.1, pp.42-55, 2006.
DOI : 10.1016/j.jmr.2005.08.013

D. Kosman, Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology, JBIC Journal of Biological Inorganic Chemistry, vol.15, issue.1, pp.15-28, 2010.
DOI : 10.1111/j.1462-5822.2007.01077.x

L. Kelley and M. Sternberg, Protein structure prediction on the Web: a case study using the Phyre server, Nature Protocols, vol.5, issue.3, pp.363-371, 2009.
DOI : 10.1093/nar/gkm977

. Deligeer, R. Fukunaga, K. Kataoka, K. Yamaguchi, and K. Kobayashi, Spectroscopic and functional characterization of Cu-containing nitrite reductase from Hyphomicrobium denitrificans A3151, Journal of Inorganic Biochemistry, vol.91, issue.1, pp.132-138, 2002.
DOI : 10.1016/S0162-0134(02)00442-7

U. Ryde, M. Olsson, K. Pierloot, and B. Roos, The Cupric Geometry of Blue Copper Proteins is not Strained, Journal of Molecular Biology, vol.261, issue.4, pp.586-596, 1996.
DOI : 10.1006/jmbi.1996.0484

K. Pierloot, D. Kerpel, J. Ryde, U. Olsson, M. Roos et al., Relation between the Structure and Spectroscopic Properties of Blue Copper Proteins, Journal of the American Chemical Society, vol.120, issue.50, pp.13156-13166, 1998.
DOI : 10.1021/ja982385f

J. Peisach and W. Blumberg, Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins, Archives of Biochemistry and Biophysics, vol.165, issue.2, pp.691-708, 1974.
DOI : 10.1016/0003-9861(74)90298-7

S. Ghosh, X. Xie, A. Dey, Y. Sun, and C. Scholes, Thermodynamic equilibrium between blue and green copper sites and the role of the protein in controlling function, Proceedings of the National Academy of Sciences, vol.328, issue.2, pp.4969-4974, 2009.
DOI : 10.1016/S0022-2836(03)00308-5

X. Xie, R. Hadt, S. Pauleta, P. Gonzalez, and S. Un, A variable temperature spectroscopic study on Paracoccus pantotrophus pseudoazurin: Protein constraints on the blue Cu site, Journal of Inorganic Biochemistry, vol.103, issue.10, pp.1307-1313, 2009.
DOI : 10.1016/j.jinorgbio.2009.04.012

A. Vila and C. Fernandez, Copper in electron transfer proteins, Handbook on Metalloproteins. Marcel Dekker ed, pp.813-856, 2001.

J. King, C. Mcintosh, C. Halsey, B. Lada, and D. Niedzwiedzki, Metalloproteins Diversified: The Auracyanins Are a Family of Cupredoxins That Stretch the Spectral and Redox Limits of Blue Copper Proteins, Biochemistry, vol.52, issue.46, pp.8267-8275, 2013.
DOI : 10.1021/bi401163g

E. Adman, J. Godden, and S. Turley, Bound and with Type II Copper Depleted, Journal of Biological Chemistry, vol.3, issue.46, pp.27458-27474, 1995.
DOI : 10.1016/S0065-3233(08)60534-3

H. Li, S. Webb, J. Ivanic, and J. Jensen, Determinants of the Relative Reduction Potentials of Type-1 Copper Sites in Proteins, Journal of the American Chemical Society, vol.126, issue.25, pp.8010-8019, 2004.
DOI : 10.1021/ja049345y

L. Kanbi, S. Antonyuk, M. Hough, J. Hall, and F. Dodd, Crystal Structures of the Met148Leu and Ser86Asp Mutants of Rusticyanin from Thiobacillus ferrooxidans: Insights into the Structural Relationship with the Cupredoxins and the Multi Copper Proteins, Journal of Molecular Biology, vol.320, issue.2, pp.263-275, 2002.
DOI : 10.1016/S0022-2836(02)00443-6

N. Marshall, D. Garner, T. Wilson, Y. Gao, and H. Robinson, Rationally tuning the reduction potential of a single cupredoxin beyond the natural range, Nature, vol.110, issue.7269, pp.113-116, 2009.
DOI : 10.1038/nature08551

S. Berry, M. Baker, and N. Reardon, Reduction potential variations in azurin through secondary coordination sphere phenylalanine incorporations, Journal of Inorganic Biochemistry, vol.104, issue.10, pp.1071-1078, 2010.
DOI : 10.1016/j.jinorgbio.2010.06.004

C. Li, S. Yanagisawa, B. Martins, A. Messerschmidt, and M. Banfield, Basic requirements for a metal-binding site in a protein: The influence of loop shortening on the cupredoxin azurin, Proceedings of the National Academy of Sciences, vol.125, issue.8, pp.7258-7263, 2006.
DOI : 10.1021/ja021005u

K. Sato, C. Li, I. Salard, A. Thompson, and M. Banfield, Metal-binding loop length and not sequence dictates structure, Proceedings of the National Academy of Sciences, vol.35, issue.suppl_2, pp.5616-5621, 2009.
DOI : 10.1093/nar/gkm216

URL : http://www.pnas.org/content/106/14/5616.full.pdf

S. Suzuki, N. Nakamura, K. Yamaguchi, K. Kataoka, and T. Inoue, Spectroscopic and electrochemical properties of two azurins (Az-iso1 and Az-iso2) from the obligate methylotroph Methylomonas sp. strain J and the structure of novel Az-iso2, Journal of Biological Inorganic Chemistry, vol.4, issue.6, pp.749-758, 1999.
DOI : 10.1007/PL00010653

C. Dennison, Ligand and loop variations at type 1 copper sites: influence on structure and reactivity, Dalton Transactions, vol.88, issue.21, pp.3436-3442, 2005.
DOI : 10.1016/0304-4173(85)90014-X

L. Basumallick, R. Sarangi, D. George, S. Elmore, B. Hooper et al., Spectroscopic and Density Functional Studies of the Red Copper Site in Nitrosocyanin:?? Role of the Protein in Determining Active Site Geometric and Electronic Structure, Journal of the American Chemical Society, vol.127, issue.10, pp.3531-3544, 2005.
DOI : 10.1021/ja044412+

A. Nersissian, C. Immoos, M. Hill, P. Hart, and G. Williams, Uclacyanins, stellacyanins, and plantacyanins are distinct subfamilies of phytocyanins: Plant-specific mononuclear blue copper proteins, Protein Science, vol.1, issue.200, pp.1915-1929, 1998.
DOI : 10.1016/0167-4838(95)00210-3

K. Kataoka, K. Yamaguchi, S. Sakai, K. Takagi, and S. Suzuki, Characterization and function of Met150Gln mutant of copper-containing nitrite reductase from Achromobacter cycloclastes IAM1013, Biochemical and Biophysical Research Communications, vol.303, issue.2, pp.519-524, 2003.
DOI : 10.1016/S0006-291X(03)00381-4