J. A. Garcia-horsman, B. Barquera, J. Rumbley, J. Ma, and R. B. Gennis, The superfamily of heme-copper respiratory oxidases, J Bacteriol, vol.176, pp.5587-5600, 1994.

M. M. Pereira, M. Santana, and M. Teixeira, A novel scenario for the evolution of haem-copper oxygen reductases, Biochim Biophys Acta, vol.1505, pp.185-208, 2001.

C. Brochier-armanet, E. Talla, and S. Gribaldo, The multiple evolutionary histories of dioxygen reductases: Implications for the origin and evolution of aerobic respiration, Mol Biol Evol, vol.26, pp.285-297, 2009.

S. Junemann, Cytochrome bd terminal oxidase, Biochim Biophys Acta, vol.1321, pp.107-127, 1997.

V. B. Borisov, R. B. Gennis, J. Hemp, and M. I. Verkhovsky, The cytochrome bd respiratory oxygen reductases, Biochim Biophys Acta, vol.1807, pp.1398-1413, 2011.

A. Puustinen, M. Finel, T. Haltia, R. B. Gennis, and M. Wikstrom, Properties of the two terminal oxidases of Escherichia coli, Biochemistry, vol.30, pp.3936-3942, 1991.

I. Belevich, V. B. Borisov, J. Zhang, K. Yang, and A. A. Konstantinov, Timeresolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc Natl Acad Sci U S A, vol.102, pp.3657-3662, 2005.

V. B. Borisov, R. Murali, M. L. Verkhovskaya, D. A. Bloch, and H. Han, Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc Natl Acad Sci U S A, vol.108, pp.17320-17324, 2011.

V. B. Borisov, E. Forte, A. Davletshin, D. Mastronicola, and P. Sarti, Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress, FEBS Lett, vol.587, pp.2214-2218, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01054294

V. B. Borisov, E. Forte, A. A. Konstantinov, R. K. Poole, and P. Sarti, Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett, vol.576, pp.201-204, 2004.

V. B. Borisov, E. Forte, P. Sarti, M. Brunori, and A. A. Konstantinov, Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem Biophys Res Commun, vol.355, pp.97-102, 2007.

A. Giuffre, V. B. Borisov, D. Mastronicola, P. Sarti, and E. Forte, Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology, FEBS Lett, vol.586, pp.622-629, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00955432

D. J. Richardson, Bacterial respiration: a flexible process for a changing environment, Microbiology, vol.146, pp.551-571, 2000.

R. K. Poole and G. M. Cook, Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation, Adv Microb Physiol, vol.43, pp.165-224, 2000.

E. Bueno, S. Mesa, E. J. Bedmar, D. J. Richardson, and M. J. Delgado, Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control, Antioxid Redox Signal, vol.16, pp.819-852, 2012.

R. L. Morris and T. M. Schmidt, Shallow breathing: bacterial life at low O 2, Nat Rev Microbiol, vol.11, pp.205-212, 2013.
DOI : 10.1038/nrmicro2970

URL : http://europepmc.org/articles/pmc3969821?pdf=render

I. Belevich, V. B. Borisov, D. A. Bloch, A. A. Konstantinov, and M. I. Verkhovsky, Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, vol.46, pp.11177-11184, 2007.
DOI : 10.1021/bi700862u

I. Belevich, V. B. Borisov, A. A. Konstantinov, and M. I. Verkhovsky, Oxygenated complex of cytochrome bd from Escherichia coli : stability and photolability, FEBS Lett, vol.579, pp.4567-4570, 2005.
DOI : 10.1016/j.febslet.2005.07.011

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2005.07.011/pdf

J. F. Heidelberg, I. T. Paulsen, K. E. Nelson, E. J. Gaidos, and W. C. Nelson, Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis, Nat Biotechnol, vol.20, pp.1118-1123, 2002.
DOI : 10.1038/nbt749

URL : https://www.nature.com/articles/nbt749.pdf

C. Liu, Y. A. Gorby, J. M. Zachara, J. K. Fredrickson, and C. F. Brown, U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria, Reduction kinetics of Fe(III), Co(III), vol.80, pp.637-649, 2002.

J. A. Gralnick, H. Vali, D. P. Lies, and D. K. Newman, Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1, Proc Natl Acad Sci, vol.103, pp.4669-4674, 2006.

L. Laz, S. Kpebe, A. Lorquin, J. Brugna, M. Rousset et al., H 2-dependent azoreduction by Shewanella oneidensis MR-1: involvement of secreted flavins and both [Ni-Fe] and [Fe-Fe] hydrogenases, Appl Microbiol Biotechnol, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01494493

H. Fu, H. Chen, J. Wang, G. Zhou, and H. Zhang, Crp-dependent cytochrome bd oxidase confers nitrite resistance to Shewanella oneidensis, Environ Microbiol, vol.15, pp.2198-2212, 2013.
DOI : 10.1111/1462-2920.12091

S. J. Marritt, D. G. Mcmillan, L. Shi, J. K. Fredrickson, and J. M. Zachara, The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR1, Biochem Soc Trans, vol.40, pp.1217-1221, 2012.

G. Zhou, J. Yin, H. Chen, Y. Hua, and L. Sun, Combined effect of loss of the caa 3 oxidase and Crp regulation drives Shewanella to thrive in redoxstratified environments, ISME J, vol.7, pp.1752-1763, 2013.

S. P. Gygi, Y. Rochon, B. R. Franza, and R. Aebersold, Correlation between protein and mRNA abundance in yeast, Mol Cell Biol, vol.19, pp.1720-1730, 1999.
DOI : 10.1128/mcb.19.3.1720

URL : http://mcb.asm.org/content/19/3/1720.full.pdf

X. F. Wan, N. C. Verberkmoes, L. A. Mccue, D. Stanek, and H. Connelly, Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis, J Bacteriol, vol.186, pp.8385-8400, 2004.

L. Nie, G. Wu, and W. Zhang, Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis, Genetics, vol.174, pp.2229-2243, 2006.

L. Nie, G. Wu, and W. Zhang, Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations, Biochem Biophys Res Commun, vol.339, pp.603-610, 2006.

K. Kaniga, I. Delor, and G. R. Cornelis, A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica, Gene, vol.109, pp.137-141, 1991.

J. S. Rieske, Preparation and properties of reduced coenzyme Qcytochrome c reductase (complex III of the respiratory chain), Methods Enzymol, vol.10, pp.239-245, 1967.

H. Schagger and G. Von-jagow, Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form, Anal Biochem, vol.199, pp.223-231, 1991.

H. Schagger, W. A. Cramer, V. Jagow, and G. , Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis, Anal Biochem, vol.217, pp.220-230, 1994.

M. Guiral, L. Prunetti, S. Lignon, R. Lebrun, and D. Moinier, New insights into the respiratory chains of the chemolithoautotrophic and hyperthermophilic bacterium Aquifex aeolicus, J Proteome Res, vol.8, pp.1717-1730, 2009.

M. G. Claros and G. Von-heijne, TopPred II: an improved software for membrane protein structure predictions, Comput Appl Biosci, vol.10, pp.685-686, 1994.
DOI : 10.1093/bioinformatics/10.6.685

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res, vol.22, pp.4673-4680, 1994.

K. Tamura, D. Peterson, N. Peterson, G. Stecher, and M. Nei, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol Biol Evol, vol.28, pp.2731-2739, 2011.

S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, and U. Ermler, The structure of cbb 3 cytochrome oxidase provides insights into proton pumping, Science, vol.329, pp.327-330, 2010.

O. Preisig, R. Zufferey, and H. Hennecke, The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb 3-type cytochrome oxidase, Arch Microbiol, vol.165, pp.297-305, 1996.

H. G. Koch, C. Winterstein, A. S. Saribas, J. O. Alben, and F. Daldal, Roles of the ccoGHIS gene products in the biogenesis of the cbb 3-type cytochrome c oxidase, J Mol Biol, vol.297, pp.49-65, 2000.

C. Kulajta, J. O. Thumfart, S. Haid, F. Daldal, and H. G. Koch, Multi-step assembly pathway of the cbb 3-type cytochrome c oxidase complex, J Mol Biol, vol.355, pp.989-1004, 2006.

M. Braun and L. Thony-meyer, Cytochrome c maturation and the physiological role of c-type cytochromes in Vibrio cholerae, J Bacteriol, vol.187, pp.5996-6004, 2005.

C. E. Vanorsdel, S. Bhatt, R. J. Allen, E. P. Brenner, and J. J. Hobson, The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity, J Bacteriol, vol.195, pp.3640-3650, 2013.

C. D. Georgiou, H. Fang, and R. B. Gennis, Identification of the cydC locus required for expression of the functional form of the cytochrome d terminal oxidase complex in Escherichia coli, J Bacteriol, vol.169, pp.2107-2112, 1987.

R. K. Poole, L. Hatch, M. W. Cleeter, F. Gibson, and G. B. Cox, Cytochrome bd biosynthesis in Escherichia coli: the sequences of the cydC and cydD genes suggest that they encode the components of an ABC membrane transporter, Mol Microbiol, vol.10, pp.421-430, 1993.

K. J. Bebbington and H. D. Williams, Investigation of the role of the cydD gene product in production of a functional cytochrome d oxidase in Escherichia coli, FEMS Microbiol Lett, vol.112, pp.19-24, 1993.

R. K. Poole, F. Gibson, and G. Wu, The cydD gene product, component of a heterodimeric ABC transporter, is required for assembly of periplasmic cytochrome c and of cytochrome bd in Escherichia coli, FEMS Microbiol Lett, vol.117, pp.217-223, 1994.

G. Krummeck and G. Rodel, Yeast SCO1 protein is required for a posttranslational step in the accumulation of mitochondrial cytochrome c oxidase subunits I and II, Curr Genet, vol.18, pp.13-15, 1990.

T. Nittis, G. N. George, and D. R. Winge, Yeast Sco1, a protein essential for cytochrome c oxidase function is a Cu I-binding protein, J Biol Chem, vol.276, pp.42520-42526, 2001.

D. L. Swem, L. R. Swem, A. Setterdahl, and C. E. Bauer, Involvement of SenC in assembly of cytochrome c oxidase in Rhodobacter capsulatus, J Bacteriol, vol.187, pp.8081-8087, 2005.

A. Hannappel, F. A. Bundschuh, and B. Ludwig, Role of Surf1 in heme recruitment for bacterial COX biogenesis, Biochim Biophys Acta, vol.1817, pp.928-937, 2012.

H. S. Carr, G. N. George, and D. R. Winge, Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu I-binding protein, J Biol Chem, vol.277, pp.31237-31242, 2002.

L. Hiser, D. Valentin, M. Hamer, A. G. Hosler, and J. P. , Cox11p is required for stable formation of the Cu B and magnesium centers of cytochrome c oxidase, J Biol Chem, vol.275, pp.619-623, 2000.

S. Iwata, C. Ostermeier, B. Ludwig, and H. Michel, Structure at 2.8 A ? resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature, vol.376, pp.660-669, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01782011

C. Ostermeier, A. Harrenga, U. Ermler, and H. Michel, Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment, Proc Natl Acad Sci U S A, vol.94, pp.10547-10553, 1997.

R. K. Poole, C. Kumar, I. Salmon, and B. Chance, The 650 and chromophore in Escherichia coli is an ''oxy-'' or oxygenated compound, not the oxidized form of cytochrome oxidase d: an hypothesis, Journal of General Microbiology, vol.129, pp.1335-1344, 1983.

C. D. Georgiou, T. J. Dueweke, and R. B. Gennis, Regulation of expression of the cytochrome d terminal oxidase in Escherichia coli is transcriptional, J Bacteriol, vol.170, pp.961-966, 1988.

K. Yang, V. B. Borisov, A. A. Konstantinov, and R. B. Gennis, The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies, FEBS Lett, vol.582, pp.3705-3709, 2008.

N. Sone, S. Tsukita, and J. Sakamoto, Direct correlationship between proton translocation and growth yield: an analysis of the respiratory chain of Bacillus stearothermophilus, J Biosci Bioeng, vol.87, pp.495-499, 1999.

J. Sakamoto, A. Matsumoto, K. Oobuchi, and N. Sone, Cytochrome bd-type quinol oxidase in a mutant of Bacillus stearothermophilus deficient in caa 3-type cytochrome c oxidase, FEMS Microbiol Lett, vol.143, pp.151-158, 1996.

T. C. Ng, A. N. Laheri, and R. J. Maier, Cloning, sequencing, and mutagenesis of the cytochrome c 4 gene from Azotobacter vinelandii: characterization of the mutant strain and a proposed new branch in the respiratory chain, Biochim Biophys Acta, vol.1230, pp.119-129, 1995.

R. Gilmour and T. A. Krulwich, Construction and characterization of a mutant of alkaliphilic Bacillus firmus OF4 with a disrupted cta operon and purification of a novel cytochrome bd, J Bacteriol, vol.179, pp.863-870, 1997.

H. Y. Chang, Y. Ahn, L. A. Pace, M. T. Lin, and Y. H. Lin, The diheme cytochrome c 4 from Vibrio cholerae is a natural electron donor to the respiratory cbb 3 oxygen reductase, Biochemistry, vol.49, pp.7494-7503, 2010.

C. P. Tseng, J. Albrecht, and R. P. Gunsalus, Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli, J Bacteriol, vol.178, pp.1094-1098, 1996.

L. Winstedt, K. Yoshida, Y. Fujita, V. Wachenfeldt, and C. , Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon, J Bacteriol, vol.180, pp.6571-6580, 1998.

O. Preisig, R. Zufferey, L. Thony-meyer, C. A. Appleby, and H. Hennecke, A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum, J Bacteriol, vol.178, pp.1532-1538, 1996.

N. J. Mouncey and S. Kaplan, Oxygen regulation of the ccoN gene encoding a component of the cbb 3 oxidase in Rhodobacter sphaeroides 2.4.1T: involvement of the FnrL protein, J Bacteriol, vol.180, pp.2228-2231, 1998.

S. C. Baker, S. J. Ferguson, B. Ludwig, M. D. Page, and O. M. Richter, Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility, Microbiol Mol Biol Rev, vol.62, pp.1046-1078, 1998.

R. S. Pitcher and N. J. Watmough, The bacterial cytochrome cbb 3 oxidases, Biochim Biophys Acta, vol.1655, pp.388-399, 2004.

T. Kawakami, M. Kuroki, M. Ishii, Y. Igarashi, and H. Arai, Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa, Environ Microbiol, vol.12, pp.1399-1412, 2010.

H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa, Front Microbiol, vol.2, 2011.

M. Lauraeus, T. Haltia, M. Saraste, and M. Wikstrom, Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases, Eur J Biochem, vol.197, pp.699-705, 1991.

M. W. Mather, P. Springer, and J. A. Fee, Nucleotide sequence and analysis of the deduced primary structure of subunit IIc of cytochrome caa 3, J Biol Chem, vol.266, pp.5025-5035, 1991.

S. A. Lobo, C. C. Almeida, J. N. Carita, M. Teixeira, and L. M. Saraiva, The haemcopper oxygen reductase of Desulfovibrio vulgaris contains a dihaem cytochrome c in subunit II, Biochim Biophys Acta, vol.1777, pp.1528-1534, 2008.

O. Lamrabet, L. Pieulle, C. Aubert, F. Mouhamar, and P. Stocker, Oxygen reduction in the strict anaerobe Desulfovibrio vulgaris Hildenborough: characterization of two membrane-bound oxygen reductases, Microbiology, vol.157, pp.2720-2732, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01460315

D. H. Figurski and D. R. Helinski, Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans, Proc Natl Acad Sci U S A, vol.76, pp.1648-1652, 1979.

M. Herrero, V. De-lorenzo, and K. N. Timmis, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria, J Bacteriol, vol.172, pp.6557-6567, 1990.