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Abstract. We investigate the effect of spatial disorder on the edge states localized at the interface between
two topologically different regions. Rotation disorder can localize the quantum walk if it is strong enough
to change the topology, otherwise the edge state is protected. Nonlinear spatial disorder, dependent on
the walker’s state, attracts the walk to the interface even for very large coupling, preserving the ballistic

transport characteristic of the clean regime.
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1 Introduction

Thirty years ago Feynman devised quantum algorithms
using unitary transformations of an initial quantum state
[1]. In 1993, Aharonov et al. [2]| introduced the notion of
quantum walk through a coin and a shift operator in anal-
ogy with the classical random walk, and found that infor-
mation propagates at a ballistic rate instead of a diffusive
one. Also in the nineties, Meyer [3]| defined quantum cel-
lular automata in one particle sector, and demonstrated
that its continuous limit leads to a Dirac equation in two
dimensions. The genealogy of quantum walks shows their
rich physical content, ranging for quantum information to
condensed matter [4,5,6,7].

Quantum walks are especially interesting because they
provide an original point of view of quantum systems
based on the properties of quantum states instead of the
more usual approach based on the energy levels and eigen-
states of a Hamiltonian. This point of view shed a new
light on the dynamics of quantum systems and the mech-
anisms by which they explore the available Hilbert space.
At variance to the standard definition of a quantum sys-
tem by its Hamiltonian, a quantum walk is defined by
an evolution unitary operator. In particular, the relation-
ship between the quantum state and information allows
to relate concepts from quantum information theory to
material systems through the introduction of a quantum
walk effective Hamiltonian. We may also invert the rea-
soning and ask whether it is possible to get some insight
on the behavior of quantum walks using concepts from
condensed matter.

Some classes of quantum walks possess remarkable topo-
logical properties whose origin can be traced back to the
structure of their evolution operator which links the parti-
cle’s spin (coin operator) with its momentum (shift opera-
tor), akin to the spin-orbit coupling in solid state, leading
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to nontrivial Berry phases, edge states and non vanish-
ing Chern numbers [8,9,10]. Experiments [11,12,13] show
that in the presence of disorder, the quantum walk losses
its coherent interference pattern and, depending on the
nature of the noise, can localize or transit to a classical
diffusion regime. Noise also affects the topological phases
and the localization-delocalization properties of one di-
mensional [14] and two dimensional quantum walks [15].
In the absence of disorder, a one dimensional quantum
walk can still localize at the interface between two dis-
tinct topological regions [16]. These phenomena are also
characteristic of topological phases in condensed matter,
like quantum Hall [17] or spin Hall insulators [18] where
edge states appear. However, it is worth noting that such
bound states are protected against disorder. As a con-
sequence, the transport properties (quantization of the
conductance, for instance) are preserved as long as the
topology is not changed.

Our aim is to investigate the effect of spatial noise
on the edge states localized at the interface between two
regions differing in their topology.

2 Quantum walk topology and effective
Hamiltonian

We consider a discrete time quantum walk in a square lat-
tice, with nonzero Chern number [8]. The walker’s Hilbert
space is the set of spinors |1 (¢)) depending on time ¢. They
are given by the Kronecker product ® of the walker’s po-
sition and spin state |x) ® |s), where x = (z,y) € Z?
is a lattice node (the lattice constant a = 1 is the length
unit), and s =1, | takes “up” and “down” values. The state
evolution is determined by a “coin” R operator acting in
spin space, and a “shift” T" operator. At a given time step,
the motion direction depends on the spin orientation. At
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Fig. 1. Phase diagram (0, «), the triangular sectors corrspond
to different Chern numbers C (see Ref. [8]). Rotation angles for
z < 0 (red point, C' = 1) and « > 0 (blue point, C' = —1). The
circles represent the distribution of random angles for J = 0.1
(inner circle) and J = 0.2 (outer circle). In the second case the
noise may change the topology of the quantum walk.

the end of the walk, a measure of the position density
probability distribution P(z,y,t), is performed.
The initial state,

[9(0) = [0) ® —= (| 1) +i 1)), (1)

1
V2
is a superposition of spin up ¥4 and down v amplitudes:

szl/\/i’ %:i/\/ia

given equal probabilities of the spin orientation in the z
direction. The coin operator rotates the spin around the
y axis by an angle 6,

_ “i0o, /2 _ cos@/2 —sin6/2
R(0) =1z ®e =la® <sin9/2 cos@/2 ) (2)

where 1, is the unit matrix in position space. The shift op-
erator moves the particle to a neighboring node according
to its spin projection:

T(p) =) (lz+ep a1+

x

|:B - 6p7$><$,$ |) 9

where e, is a unit vector in the p direction. One time step
is executed by the unitary operator,

p=zy (3)

U(0, ) = T(z)R(O)T (y)R(a)T (y)T (2)R(O),  (4)
where the product T'(y)T' (z) = T'(z)T (y) shift the position
by +1 on both directions (z,y) — (x £ 1,y £ 1).

According to the values of the rotation angles the fam-
ily of effective Hamiltonians,

H(0,a) =ilogU(8, ),

is characterized by a Chern number taken the values C' =
{=1,0,1}. The effective Hamiltonian is not uniquely de-
fined, its eigenvalues are determined modulo 27 (quasi-
energies). The topological properties of the walk related
to the symmetries of the effective Hamiltonian [8], depend
on the values of the two parameters (0, «), as schemati-
cally represented in Fig. 1. It is worth noting that the
topological classification of the quantum walks is richer
than the one inferred from the sole effective Hamiltonian
symmetries: taking into account the properties of the (one
period) evolution operator implies the existence of a pair
of topological invariants [19]. As a consequence, topolog-
ical protected edge states can appear at the interface of
two trivial effective Hamiltonian phases [9,15].

The explicit form of H is easily obtained using the
momentum representation k = (kg, k) of the unitary op-
erator U, in the base of the Pauli matrices o:

U(k) = T(ka) RO)T (k) R()T (ks + k,)RO),  (5)
where
R(0) = cos@og —isinf oy, T(k) =coskog+isinko,
from which one readily obtains,
U(k) =doop —id - o, d = (dy, dy, d,), (6)
or equivalently,
H(k) = E(k)n(k) - o, (7)
where the energy spectrum is given by,
cos E(k) = cos % [ cos 6 cos ky, cos(ky, + 2k, )—
sin k, sin(k, + 2k,)] — sin % sinfcos®ky, (8)

and the unit vector n(k) = d(k)/d(k), with

dy = sinky [cos % sin @ cos(ky + 2k, )—

2 g cos kg;] ,

2sin % sin
d, = sin % (cos O cos® ky, + sin® ky )+

cos % sin @ cos ky, cos(ky + 2ky) ,
d, = sin % sin @ sin k; cos k,—

cos % [ cos 0'sin k,, cos(k, + 2k, )+

cos ky sin(k, + 2k,)] . (9)

A quantum walk with effective Hamiltonian (7) possesses
a nontrivial topology if the n vector (or equivalently d),
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Fig. 2. The topology of the effective Hamiltonian H =
E(k)d(k) - o change when the vector d(k) vanishes. In the
top panel § = 7/2, a = 37w /7, the d vector surrounds the ori-
gin (black point), which corresponds to a nontrivial topology;
in the bottom panel 8 = v/2/2, a = (1 + 1/5)/2, the topology
is trivial. The two colors correspond to the inner and outer
surfaces.

surrounds the origin when the k vector scans the Brillouin
zone [—m,7]2. In Fig. 2 we represented two cases differing
in their Chern number. We observe in the parametric plot
of the vector d over the Brillouin zone that depending
on the choice of the pair (8, «), the origin is surrounded,
signaling a nontrivial topology, or it is not surrounded.
The random walk thus defined possesses particle-hole
symmetry but not time-reversal symmetry. Indeed, from
the explicit form (7), we verify that under conjugation
(i — —i,k — —k) the effective Hamiltonian changes sign:
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Fig. 3. Position probability of a quantum walk with an in-
terface between two regions having distinct topology: P =
[¥4)% + |t1|*. The top panel (a) shows that the walker dis-
tribution at time ¢ = 1000, is essentially concentrated along
the interface. The bottom panel (b) shows the same data in
a logarithmic scale to reveal the structure of the small ampli-
tudes (the wave folding due to the periodic boundary is not
visible in a linear scale).

the one step operator (4) is real implying that the walk
has particle-hole symmetry. The walk defined by (4) with
particle-hole symmetry and broken time reversal symme-
try, is thus reminiscent to class D in the usual classification
[20].

To investigate the consequences of the nontrivial topol-
ogy, in particular the edge states, we perform a series of
numerical computations for different disorder types. We
use Eq. (4) to calculate the walker state evolution for one
time step, in a square lattice with periodic boundary con-
ditions. We split the lattice into two regions separated by
an interface at x = 0, differing in their Chern number:
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Fig. 4. Random distribution of impurities for p = 0.01 (left)
and p = 0.1 (right) over a square lattice of size 201 x 201.

for x < 0 we take (0,a) = (7/2,37/7)), and for x > 0,
(0,a) = (—(1 4+ +/5)/2,/2/2), with C = 1,1, respec-
tively (Fig. 1). In the one dimensional case the presence
of an edge state at the origin leads to a localization of the
quantum walk [8,16]. In two dimensions one may expect
propagation along the edge state localized at the inter-
face. This is precisely what we observe, as demonstrated
in Fig. 3 where a realization of the quantum walk (4) is
shown. The propagation along the interface is ballistic, as
in the case of a one dimensional quantum walk. This phe-
nomenon is observed for initial states having an overlap
with the edge bound state, otherwise the quantum walk
do not localize and explore the whole lattice with ballistic
speed.

3 Spatial disorder

In order to investigate the effect of disorder we consider
a set of randomly distributed sites I, we call impurities,
where the coin operator change. The spatial concentration
of impurities is given by the probability p for a site to be
occupied by an impurity. In Fig. 4 we show two of such
distributions with p = 1% and p = 10%. In such sites the
simplest modification of the coin rule (2) is to make the
angles 6(x) position dependent,
60— 0(x) =0+ Jo0(x), &0 ~U(0,2m)
with & € I the set of impurity sites, and U/ the uniform
probability distribution in the given interval (i.e. rotation
disorder). The parameter J measures the strength of the
disorder. For J small enough to let the system’s topol-
ogy unchanged, one may expect the edge state protected;
in the opposite case one expects localization (or diffusive
spreading in same special cases [15]) of the quantum walk
(Fig. 1).

It is important to emphasize that the introduction of
spatial disorder do not change the unitary evolution of the
walker, nor the symmetries of the coin operator; however it
modifies in a nontrivial manner the physics of the system
by breaking the translational invariance, only preserved
in a statistical sense, and by introducing new correlations
between different sites that should change the walk inter-
ference patterns and hence its spreading properties. The

effects of spatial noise in quantum walks are well studied,
especially in one dimension; they can localize the walker
or change its spreading rate [21,22,11]. A more subtle be-
havior appears in topologically nontrivial walks, where lo-
calized zero energy modes may coexist with delocalized
nonzero energy modes [23]. We investigate in the case of
two dimensions effects alike to this one.

We show a numerical computation of the random ro-
tation quantum walk in Fig. 5, to compare the weak and
strong noise cases with the clean system of Fig. 3. The
presence of the interface introduces an anisotropy; ac-
tually, the evolution of the initial condition leads to an
asymptotically inhomogeneous distribution of the position
probability of the walker with different spreading proper-
ties on the interface and in the bulk. We find that the
known general picture is confirmed, expectedly a localiza-
tion transition is observed at a finite value of the disorder
strength, as occurs in the one dimensional split-step quan-
tum walk [14]. The point is that in two dimensions, even if
the interference pattern of the walk is lost away form the
interface and the bulk distribution is localized or spread
slowly, the ballistic transport along the edge is not affected
for weak enough disorder.

To quantify the effect of noise on the walker spreading,
we measure the width of the probability density:

P(z,t) = [¢1(z, )] + v (2, 1) (10)

using the definition

w(t) =Y |z|*P(x,t) - (Z wP(:c,t)) (11)

which gives std r(t) = y/w(t), and an analogous definition
for std yo(t) for the width on the interface x = 0:

1/2
Zy sz(O,y,t)] (12)

stdyo(t) =
ot [ >, P0.4.1
(Note the time dependent normalization and the absence
of mean term in order to catch running away distribu-
tions.)

Figure 6 shows the width for different values of the dis-
order strength J. Moreover we plot the probability to stay
in a neighborhood of the origin P(z = 0,y € [—100, 100], ¢)
for weak and strong disorder. The measure of the isotropic
width shows that the presence of disorder destroys the bal-
listic regime. However, the edge state transport remains
ballistic for weak enough disorder. The width of the po-
sition distribution at the interface (x = 0), increases lin-
early with time only for weak disorder. Concomitantly, the
probability to find the walker near the origin tends to zero,
in contrast to the persistence observed for stronger disor-
der. The deviation of stdr(t) to a straight line together
with the linear stdyg(t) is a manifestation of the underly-
ing anisotropy of the walk in the weak noise regime, which
tends to localize in the bulk and to propagate at the in-
terface.
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Fig. 5. Position probability distribution at ¢ = 1000 for p = 0.03 and J = 0.05 (a-b) and J = 0.2 (c-d). The coupling J = 0.2
is strong enough to change the topology (c.f. 1); as a consequence the edge state is no longer protected and the walk localizes.
Comparison with Fig. 3 shows that in the low noise case J = 0.05, the edge state is protected, but it is wider than in the clean
case, and moreover, diffusion destroys the walk ballistic spreading outside the interface.

4 Nonlinear spatial disorder

It is interesting to investigate the effect of disorder under a
more complex setting, in particular generalizing the walk
to take into account nonlinear (many-body) interactions
[24,7,25,26]. Pursuing our analogy with matter systems,
we may think the impurities as being fixed spins whose
interaction with the itinerant spin of the walker is of the
exchange type. This “magnetic disorder” would introduce
into the coin operator a phase factor ¢

SJ(¢) _ e—iJ(zS(a:,t)Uz ,

where € I and J the coupling constant, which leads to
the redefinition

R(0) = R;(0,0) = 5;(9)R(0) . (13)

The simplest choice is to take ¢ as a random angle, uni-
formly distributed on the circle [15] (i.e. phase disorder).
However, if we assume that the orientation of the fixed
spin is determined by the orientation of the itinerant one
(its z spin component), ¢ will be related to the walker’s
state, ¢ = ws(x,1):

s(a,t) = (O — [y (@, t))*, zel.  (14)
leading to a nonlinear coupling. The coin operator R (6, ¢)
replaces R in (4); it is now a composition of a rotation
around the y axis (with a uniform angle in each region)
followed by a rotation around the z axis at the occupied
sites of the lattice. The spatial distribution of the defects
remains random and we refer to the choice (13)-(14) as
“nonlinear disorder”. However, the values of ¢ at different
sites are correlated by (14) with the walker’s state, making
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Fig. 6. Quantum walk in the presence of rotation disorder.
Width of the density distribution along the interface (a) as
a function of time, for J = 0.05 (blue lines) and J = 0.2
(red lines), and p = 0.03 (solid lines) and p = 0.01 (dotted
lines); the upper black line corresponds to the clean case. (b)
Radial (black line) and at the interface spreading in logarithmic
scale; J = 0.05 (blue, scaled by a factor 0.4 to fit inside the
frame), J = 0.2 (red). The dashed lines correspond to the
fitting exponents 1 and 1/2. For weak disorder the propagation
is ballistic (exponent 1), and approaches diffusion for strong
disorder (exponent 1/2). (c) Probability to be on the interface
in a neighborhood of the origin, z = 0 and y € (—100, 100),
J = 0.05 (lower blue line), and J = 0.2 (upper red line).
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Fig. 7. Nonlinear and phase disorder quantum walk. Proba-
bility distribution of the nonlinear walk, (a) for J =1 and (b)
J =10, (p = 0.1, ¢ = 1000). In (a) superposed to the nonlin-
ear walk (in gray), we show the random phase walk using the
same parameters, localized near the origin (in red). (¢) Width
in the y direction for x = 0, at the interface, showing ballis-
tic propagation for J = 0 (dotted line), J = 1 (blue dashed
line), and J = 10 (blue solid line), in the nonlinear case; one
can compare with the random phase disorder (red dashed line)
J = 0.1 and (red solid line) J = 1, showing diffusive spreading.
Note the similar distribution in (a) with the one of the clean
state (Fig. 3).

the nonlinear disorder essentially different to the rotation
or magnetic disorder types.

One important consequence of the introduction of the
coin operator (13) with respect to the random rotation one
of the previous section, is that the form R;(6, ¢) breaks
the so-called particle-hole symmetry. The unitary opera-
tor of the walker is no longer real: the rotation spin axis
has now a z component. As a matter of fact, the coin op-
erator can be put in a form of a rotation around an axis
depending on ¢ of angle also depending on ¢. This is true
even if the angle ¢ is taken randomly instead of being re-
lated to the walker’s state, although the implications on
the existence of edge states in both cases, nonlinear dis-
order and random phases, can in principle strongly differ.
The breaking of the particle-hole symmetry change the
topological properties of the quantum walk putting it in
the same class as the integer quantum Hall system (see
Ref. [8], Appendix B).

To highlight the specific properties of the nonlinear
walk, we chose the coupling parameter and the concen-
tration in a range about J ~ 1-100, and p ~ 0.1, respec-
tively. These large values of J are justified because the spin
density is of the order of p and decreases at a given site
at least as 1/t because of the probability spreading over
the lattice (this is the scaling corresponding to the ballis-
tic transport over the interface, supposing no spreading in
the transverse direction). Significant results are obtained
for values with J > 1/p; the probability density on the
interface scales as P ~ 1/t in the ballistic regime. It is
a remarkable fact that smaller values do not give a big
difference with the clean case, for times up to ¢ = 1000.
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Fig. 8. Zoom on the small scales of the spin density distribution s x 10°, s = |¢p4| — [, |2, for J = 0 (a), J = 10 (b), and
J =100 (c) (p=0.1, t = 750). In the nonlinear case (b-c), spin up and down waves are present on both sides of the interface.

The most striking observation is that the ballistic trans-
port is fully preserved, even in the direction perpendicular
to the interface. As shown in Fig. 7, where we plot the den-
sity and walk width at the interface in the case of nonlinear
disorder, we observe ballistic spreading proportional to ¢;
though not shown in the figure, we find in particular that
the isotropic width, after an initial transient, is also linear
in time.

Merely for extreme values of the coupling constant
J > 1/p, the well structured interference pattern of the
clean walk tends to loss its organization. This start to
be visible on the small scale amplitudes as shown on the
three panels of Fig. 8, where we compare the spin density
for the clean case with the nonlinear walk for two values
of J. For smaller values of J the nonlinear walk behavior
remains close to the clean one, for the same initial condi-
tion starting at the interface. In sharp contrast with the
ballistic transport of the nonlinear walk, if we replace the
self-consistent phases ¢ = ¢(¢) in (13) by random an-
gles ¢ ~ U(0,2m), we numerically observe that the edge
channel is broken and the walk cannot spread at a ballistic
rate (Fig. 7c). This can be understood as a consequence of
the random phase shifts in the z direction that for strong
enough disorder lead to spin flips hence changing locally
the walker’s direction. By the way of comparison we re-
mark the special behavior of the system governed by the
nonlinear coin in which the edge states appear to be ro-
bust. Therefore, the nonlinear disorder restores the ballis-
tic behavior lost for random phases, even for much larger
values of the coupling constant.

In fact, the edge state not only provides a channel to
transport the information, it is also an attractor to the
nonlinear walk. Indeed, if in the absence of disorder one
starts with an initial state that does not overlap with the
edge state, for instance at x = —10, the quantum walk
propagates freely on the whole lattice. However, adding
the nonlinear interaction, the walk is partially trapped at
the interface where it propagates at a ballistic rate, in
spite of the spatial disorder (Figs. 9 and 10). In Fig. 9
we compare at ¢ = 200 the density distribution at the in-
terface, and in Fig. 10 the distribution over the lattice.

(@) top =200

position y

Fig. 9. Short time (¢ = 200) position distribution of a quan-
tum walk for an initial condition at x = —10, in the spin up
state. (a) Clean case, the walk freely propagates on the lattice;
(b) with rotation disorder it is localized (J = 0.2, p = 0.03),
and (c) with nonlinear disorder it is partially trapped at the
interface restoring the ballistic propagation (J = 100, p = 0.1).
Only the nonlinear quantum walk is trapped at the interface.
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Fig. 10. Position distribution for a walk started at © = —10, outside the interface, in a spin up state (thus, mainly propagating

towards the right); (a) clean, (b) rotation disorder (p = 0.03, J = 0.2), (c¢) phase disorder (p = 0.03, J = 0.2), and (c) nonlinear

disorder (p = 0.1, J = 100).

The initial particle position is chosen in the left region
(x = —10 at t = 0), and the spin set up, to favor the prop-
agation towards the right, allowing the walker encounter
the interface. Figure 10 clearly shows the difference be-
tween the clean case (a), the random rotation angles (b)
and phases (c) disordered cases, and finally the nonlinear
walk (d). The anisotropy is a consequence of the choice of
the initial state (spin up). Only in the nonlinear case an
accumulation of probability density on the interface is ob-
served. This behavior, for which the interface edge states
act as an attractor, is reminiscent to a generalization to
two dimensions, of the observed phenomenon of localiza-
tion at a topological defect in one dimension [26]. This is
related to the fact that at low energy and for small val-
ues of the rotation angle, the one dimensional walk limits
to the nonlinear Dirac equation that has soliton solutions
[25].

Indeed, using the explicit expression of the evolution
operator in momentum space, it is easy to obtain its “hy-
drodynamic” limit k — 0, U = ug + ugziks + uyiky:

«
UOZR(9+§> ,
0 0 0
Uy = 2cos —12—a (— sin iaw + cos 50,3)

(15)

Uy = 2COS 0=
which leads, using a crude approximation for small angles
@ 0
U %00—1(9—1—5)%, uw%202—50w, U, ~ 20, ,
and adding the nonlinear term in J as a smooth mean-

field,
5(a,t) = (To.]v),
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(averaged spin distribution) to the Dirac like equation in
2 + 1 dimensions:

0 0 0 0

i [(a + %) 7, +g§(w,t)az} Gz, t) =0, (16)

where ) is the position representation of the spinor, and
g = 3mpJ the effective coupling constant (cf. [25,7] for
a more formal calculation in the one dimensional case).
In addition to the “mass” term which gives the boundary
separating two different topologies (the mass vanishes for
a + 20 = 0, in the present approximation for small an-
gles). The effective coupling constant is of the order of
pJ, which justifies the choice of J ~ 1/p as the order of
magnitude of the nonlinear noise in the numerical compu-
tations. The term in 60, is the lowest order term showing
the anisotropy of the walk, the “velocity” 6 being smaller
than the “light velocity” ¢ = 2 in the diagonal direction.
We note that the nonlinearity appears as a self-consistent
gauge field. The nonlinear term, being proportional to ic,
adds naturally to the first order spatial derivatives also
proportional to o,, in a way similar to a “vector” potential
[27]. This is somewhat different to the more usual nonlin-
ear Gross-Neveu model in which the nonlinear term adds
to the mass term [25], or the state dependent rotation of
Ref. [26] which preserves the particle-hole symmetry.

5 Conclusion

In conclusion, we investigated the effect of spatial disorder
in a two dimensional discrete quantum walk. We demon-
strated the ballistic propagation along the edge state lo-
calized at the interface between two distinct topological
phases. This edge state is robust against quenched disor-
der, provided it cannot change the system’s topology. In
particular, we found an anisotropic state with a bulk lo-
calized density distribution coexisting with ballistic prop-
agation at the interface.

In the case of a coin operator depending on nonlinear
phases randomly distributed in space, the ballistic prop-
agation of the information, mostly as in the absence of
disorder, is preserved even for very strong couplings. This
is also in contrast with the behavior of a walk perturbed
by random phases breaking the particle-hole symmetry,
in which case the ballistic propagation is no longer possi-
ble. In addition a new phenomenon arises, the walk can
be trapped at the interface. The nonlinear walk can be
mapped to a Dirac equation in the continuous limit with a
mass term depending on the rotation angles and a nonlin-
ear term proportional to the smoothed spin density, known
to possess propagating localized solutions along the inter-
face (the transverse direction being localized).

We focused here on the rich and striking phenomenol-
ogy of quantum walks and their topological edge states;
the analysis of the mechanisms behind the observed ef-
fects of disorder, especially in the nonlinear case, deserves
further consideration.

We benefited from useful discussions with Laurent Raymond
and Thomas Krajewski. We thank Giuseppe di Molfetta for
his interest and thorough comments. This work was partially
supported by CNRS UMR 7332, and Université de Toulon.
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