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We show that, after a transformation, the dynamics of linear perturbations (spin waves) around a singular
Bloch point soliton is formally equivalent to a quantum system of an electron in a magnetic monopole field. The
analytical solution to this problem is known and allows us to find the spectrum and the scattering of a wave in a
Bloch point field.
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I. INTRODUCTION

Bloch points (BPs) are topological solitons found in three-
dimensional magnets. They have been observed or inferred
in different contexts, such as in the transition region between
Bloch lines embedded in Bloch walls [1] and in numerical
simulations of quasi-two-dimensional systems during the
process of reversal of vortex cores [2–4]. More recently, BPs
have been identified as required sources and sinks for the
unwinding of a skyrmion lattice [5]. Remarkably, there is also
a recent experimental work in which a static BP was observed
in cylindrical magnetic nanowires [6]. The defining property of
BPs is that in a closed surface around its center the direction of
the magnetization field covers the whole solid angle an integer
number of times. When the norm of the magnetization field
is preserved this property turns into a topological protection
(in which case the BP center is a singular point where
ferromagnetic order is destroyed). Actually, BPs can be seen as
the equivalent of two-dimensional Belavin-Polyakov solitons
[7] (skyrmions) if we fold the physical plane over the surface of
a sphere by means of the stereographic projection. In this sense,
the simplest BPs are solitons with unitary topological charge
and it is for this reason that they are implicated in topological
transitions where topological charge always changes by steps
of ±1. Even in strictly two-dimensional systems we can
observe the appearance of a BP-like configuration given by
the superposition of two magnetic vortices (a vortex and
an antivortex) with the same topological charge (Pontryagin
invariant) but opposite vorticity. [8–10]. The control and
manipulation of topological solitons (principally vortices and
skyrmions) by means of electrical currents in the hope to
find new alternatives for information storage has relaunched
in recent years the investigation on BPs. Another potential
utilization of BPs is in the field of magnonics, that pretends
to manipulate magnetic solitons by means of the spin waves
(SWs) generated in the material [11,12], preventing in this
way the Joule effect produced by currents. In any case,
knowledge of spin-wave behavior is of paramount importance
to understand and to control BP dynamics.

Considering these facts it is worth knowing the dynamical
and stability properties of BPs in ferromagnetic materials.

*gabriel.elias@usach.cl

For this purpose, in this paper we study the SWs around a
singular BP described by the exchange energy, that is the most
important term around the singularity [13]. Exchange inter-
action is responsible for ferromagnetic order and is the
most divergent term around the center of the BP, giving the
topological structure to BPs. In this paper we will concentrate
on exchange energy, that is a geometry-independent term, and
so it can give us the universal results that can be considered as a
first-order contribution to spin-wave dynamics. By performing
a transformation of magnetization field into the complex plane
we are able to calculate the spectrum of oscillations around the
BP that turns out to be the same as those of a quantum system
of an electrical charge in a monopolar magnetic field. The
mathematical analogy between the Dirac monopole and spin-
wave dynamics around the BP allows us to calculate with ease
the scattering of a SW in a BP field, opening a new possibility
to BP detection and localization, by means of the observation
of the interference pattern and the intensity profile of scattered
spin waves. It is interesting to note that in some particular
cases the same method gives as a result a Schrödinger-like
equation for SWs, for example, for single skyrmions [14],
vortex domain walls [15], and one-dimensional domain walls
[12]. It is worth noting, however, that there are situations in
which the equations for SWs are more complicated, giving
sets of two coupled Schrödinger equations, as in the case of
magnetic vortices [8].

The paper is organized as follows: in the second section we
present the physical system and the equations of motion, with
the BP as a solution of them. In the third section we perform
a change of variables into the complex plane and we perturb
the equations of motion around the BP solution, showing that
the resulting linear equation is a Schrödinger-like equation
for the interaction between an electron and a magnetic
monopole. In the fourth section we show the analytical solution
for the oscillations and the functional form of the SWs. In
the fifth section we study the scattering of a plane wave
produced by the BP using the results of the previous sections
and classical results on magnetic monopoles.

II. MODEL AND BLOCH POINT SOLUTION

We consider a system composed of dimensionless clas-
sical spins parameterized by field coordinates (S,�,�) as
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FIG. 1. (Color online) Three kinds of BPs depending on the
vorticity q and the phase in the azimuthal coordinate γ .

S = S(cos � sin �, sin � sin �, cos �) where �S is the
molecular spin proportional to the magnetization. The energy
of the spin configuration is dominated, in the vicinity of the
BP, by the exchange contribution E = ∫

(dV/2a)J (∇S)2, with
J the exchange energy constant and a the lattice parameter. In
this frame, there is a natural cutoff for the wave-vector norm
corresponding to a minimum wavelength of the order of the
exchange length �e, defined by �e = √

J/M2
s a, with Ms the

saturation magnetization. This exchange length turns out to
be of around 6 nm in Permalloy. The kinetic term for such a
system is the so-called Berry termSB = ∫

(dV/a3)�S cos ��̇.
The magnetic texture predicted by this action acquires the
form of a twisted BP and can be simply written as �0 = pθ

and �0 = qφ + γ where θ and φ are the usual spherical
coordinates in space r = (r,θ,φ). Since the magnetization field
is single valued we need p and q to be integers (see Fig. 1). The
free parameter γ represents an azimuthal tilt with respect to
the radial direction, making the BP twist around z. Its optimal
value depends on additional terms in the energy, particularly
the dipolar energy [13], giving as a result a twisted BP with a
definite angle γ . Works found in the literature [16–18] showed
that if we allow the variation of the magnetization norm it
is possible to estimate the size of the singular region for a
prototype magnet (for example, permalloy); this singularity
region is found to be of a few nanometers. The behavior of
the magnetization in the vicinity of the BP is, nevertheless,
filled with subtleties. Recent simulations reveal that to give
a proper assessment of the singular behavior it is necessary
to resolve the magnetic degrees of freedom down to atomic
resolution [19]. This is consistent with some micromagnetic
simulations that have shown that it is possible to stabilize a
BP in a spherical domain of a few nanometers [17,20]. In this
work we focus on the topological BP with topological charge
Q = pq (also called the Pontryagin invariant, it is simply the
number of times that magnetization on a closed surface around
the BP center covers the whole solid angle). In this paper we
will concentrate on the case p = 1, so the vorticity q is the
same as the topological charge Q. BPs (as vortices) cannot
be considered localized solutions because the spin field is not
homogeneous at infinity, and so the BP energy EB calculated
for a spherical domain is proportional to the radius of the
sphere R as EB = 8JS2Q(R/a).

III. SPIN-WAVE EXCITATIONS IN THE VICINITY OF A
BLOCH POINT

In order to calculate the SW excitations around the BP,
we start from a given stationary solution parametrized by the

spherical coordinate field �0 and �0 and consider a small
distortion of the magnetization texture characterized by a local
change δ� and δ�. This distortion is readily associated with
a change in the magnetization vector equal to δS = δ� �̂ +
sin �0δ� �̂. As expected the distortion lies in the tangent
plane to the magnetization sphere; within this plane we follow
[14] and use complex notation: 	 = δ� + iδ� sin �0. The
square of variations of the spin vector around a particular
configuration is therefore related to the norm of 	 by δS2 =
S2|	|2, allowing us to interpret the “density of probability”
|	|2 as the density of SWs. Expanding the magnetic action up
until the second order in the perturbation 	 we obtain

S (2) = 1

2

∫
	(i�∂t − ĤB)	dtdV/a3, (1)

with

ĤB = − �
2

2m∗

(
∇2 + 2iq

cot θ

r
φ̂ · ∇ − q2 cos 2θ

r2 sin2 θ

)
, (2)

where we have defined the equivalent mass m∗ = �
2/4JSa2.

The equations of motion for the spin waves are obtained
from the Euler-Lagrange equations of the linearized action,
δS
δ	

= 0, giving

i�∂t	 = ĤB	. (3)

The effective Hamiltonian for the linear oscillations around the
soliton can be written as ĤB = �

2

2m∗ [−i∇ + A(r)]2 + V (r),

A(r) = q cot θ
r

φ̂, and V (r) = − �
2

4m∗
q2

r2 .

The effective spin-wave Hamiltonian is formally equivalent
to that one describing a quantum-mechanical charged particle
moving under the influence of the magnetic field created by a
magnetic monopole located at the singularity, and in a scalar
attractive isotropic potential V . Away from the BP we have
B = ∇ × A = −q r̂/r2 + 4πq r̂δ(x)δ(y) (see Fig. 2).

The vector potential satisfies ∇ · A = 0, the so-called
Coulomb gauge. The magnetic field corresponding to potential
vector A is the famous Dirac monopole field [21,22] that is
radial but having zero divergence (here and in what follows we
adopt the formalism of Schwinger et al. [23]). The absence of
a Coulomb term in the Hamiltonian means that the interaction
is between two particles, one having an electric charge and the

FIG. 2. (Color online) The magnetic field B = q r̂
r2 −

4πq r̂δ(x)δ(y) generated by the vector potential A(r) = − q cot θ
r

φ̂.
The black arrows are the singularity line where potential is infinity
and field has opposite direction. In this case the singularity line is
along the whole z axis (this is called symmetric potential).
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FIG. 3. (Color online) Angular dependence of the eigenfunctions Eq. (9) for q = 1, for different (l,m) modes, and polar plot of the absolute
value |Y (q)

lm (θ,φ)| with, in color, their argument.

other having a magnetic charge, but not both kinds of charges
in the same particle (there are no “dyons” implied).

IV. STATIONARY SOLUTIONS

To solve this system we work in the standard way, searching
for the eigenvalues E of the Hamiltonian ĤB	(r) = E	(r).
From the classical version of the magnetic monopole problem
it is known [23] that this Hamiltonian conserves a generalized
version of the classical angular momentum J = r × p + q r̂,
that in the quantum formalism gives rise to the operators Ĵ2

and Ĵ z, which in explicit form are

Ĵ2 = −�
2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]

+ 2i�2q
cos θ

sin2 θ

∂

∂φ
+ �

2q2

sin2 θ
, (4)

Ĵ3 = −i�
∂

∂φ
. (5)

Their eigenfunctions are given by the so-called generalized
spherical harmonics Y (q)

lm (θ,φ) (see the Appendix). The eigen-
values problem is solved in a way similar to the standard
angular momentum problem:

Ĵ2Y (q)
lm (θ,φ) = l(l + 1)�2Y (q)

lm (θ,φ), (6)

and

Ĵ zY (q)
lm (θ,φ) = m�Y (q)

lm (θ,φ), (7)

where l � |q|, and −l � m � l are integers. The generalized
spherical harmonics share a series of properties with the
usual spherical harmonics and have the important property
of reducing to them when q = 0, Y (0)

lm (θ,φ) = Ylm(θ,φ).
Using the separation of variables 	(r) = R(r)Y (q)

lm (θ,φ)
and defining �(� + 1) ≡ l(l + 1) − 2q2, the radial differential
equation becomes[

1

r2

∂

∂r

(
r2 ∂

∂r

)
+ k2 − �(� + 1)

r2

]
R(r) = 0, (8)

where we have the dispersion relation k2 = 2m∗E/�
2 predict-

ing a group velocity v = (2JSa2/�)k. This equation is solved
by spherical Bessel function j�(kr) of order �. With this we
can write the general solution for the spin-wave excitations in
the form of an expansion:

	(r) =
∞∑
l=q

l∑
m=−l

Aklmj�(kr)Y (q)
lm (θ,φ). (9)

The condition l � q shows that there is only one mode of
oscillation being zero at the origin: the one corresponding to
q = 1 and l = 1 [see the relation previous to the Eq. (8)],
which gives a Bessel function of order � = 0. In all the other
cases the modes are different from zero at the origin. In this
way, the singularity at r = 0 is naturally avoided by most of
the modes. We show in Fig. 3 some representative modes of
the angular part of the solution.

An important feature of these solutions is the absence of
local modes. In fact, in our system there is no Coulomb-like
potential, making it so that the radial part of the equation is
equivalent to a free particle (aside from the relation between
the quantum numbers � and m). This is closely related to
the fact that, from the classical point of view, the angular
momentum conservation in the interaction of the monopole
and the electron gives an open trajectory over the surface of a
cone in which the closest distance between the particles is the
impact parameter. In general, solitons breaking the continuous
translational symmetry should have special zero modes that are
usually quasilocal ones [24]. These zero modes do not appear
in our treatment because we do not consider the rigid motion
of the BP, fixing its position at the origin of coordinates.

V. SCATTERING OF SPIN WAVES BY THE BLOCH POINT

Let us now consider the problem of scattering of SWs by a
BP. We have a straightforward relation between the probability
density |	|2 and the intensity of SWs. Let us assume that
we are far away enough from the BP in regions where
magnetization is almost homogeneous. There the Hamiltonian
reduces to a free particle whose simplest solutions are in the
form of plane waves. We can expand a planar wave into a series
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ELÍAS, CARVALHO-SANTOS, NÚÑEZ, AND VERGA PHYSICAL REVIEW B 90, 224414 (2014)

FIG. 4. Ratio of the differential cross section with respect to the
small-angle one, for q = 1, as a function of the scattering angle.

with the eigenfunctions of Eqs. (6) and (7) [23]. Recognizing
and setting apart the terms that represent an incident plane
wave from those associated with an outgoing spherical wave
we can find the amplitude of the spherical scattered wave
f (θ ), where θ is the angle between the incident wave and the
point we are looking at (the scattering amplitude is independent
of the choice of the singularity line). Explicitly we have [23]

2ikf (θ ) =
∞∑
l=q

(2l + 1)Y (q)
lq (π − θ,φ = 0)e−iπ�. (10)

There is no explicit expression for this series and we need to
evaluate it numerically. In the limit of small angles θ � 1 the
differential cross section becomes functionally equivalent to a
Rutherford scattering:

(
dσ

d


)
0

=
(

q

2k

)2 1

sin4(θ/2)
. (11)

We plot numerically the differential cross section divided by
the small-angle limit, Fig. 4, for the topological charge q = 1.

The scattering of a spin wave moving across a BP
singularity can be used to alter its location, as has been
proposed in the context of domain-wall dynamics, where by
means of the spin waves generated in the material [11,12]
a force is found over the domain wall. The result that we are
presenting, concerning the behavior of spin waves around BPs,
is of paramount importance to understand and to control BP
dynamics.

VI. DISCUSSION AND CONCLUSION

In this paper we study a static and singular BP and the SWs
in its presence. We use the simplest model that gives rises to a
BP solution and its topological properties, that is, the exchange
energy. By doing a very simple transformation that puts the
constant norm magnetization field into a complex variable, we
are able to write a Schrödinger equation for the perturbations
around the BP. This equation gives us the dynamics of the SWs
and it is found to be equivalent to the dynamics of the quantum
interaction between an electron and a magnetic monopole,
where the product of the electric charge and magnetic charge of
the particles is the topological charge. We take advantage of the
enormous understanding cumulated through the years on the

subject [22] to solve the Schrödinger equation (and find in this
way the dynamics of the SWs) and to reinterpret the previous
results on quantum scattering as the problem of free SWs that
find in their way a BP. The formula predicts a Rutherford-like
scattering for small angles, and a complex behavior for angles
larger than π/2, especially when the topological charge of
the BP is increased and we are close to the backscattering
(θ → π ).

The properties of the scattering on a BP field open new
possibilities for its detection by means of the study of its
spectrum, and can be considered as the first-order effects
coming from the topology of the soliton. The difference in
scattering of differently charged BPs can also be used to
measure the topological charge. Analytical calculations on
BPs with other terms in the energy (such as dipolar energy,
anisotropies, or external fields) are intrinsically complex and
it is not yet clear what are the stability regions, even if it is
commonly accepted that BPs are unstable in the presence of
external field and anisotropies (considering form anisotropies
and crystallographic ones). But even considering additional
terms in energy, it is quite possible that the new situation
follows the analogy between SWs in the BP field and the
quantum interaction between an electron and a magnetic
monopole because of topological reasons. The existence of
a region with reduced magnetization raises a difficulty for
the exact solution we are proposing. At a first glance the
applicability of our solution is restricted to wavelengths larger
than the characteristic size of this region. New calculations
must include modifications in the radial part that could support
bound states, absent in our approach. It could then be very
interesting to test these kinds of considerations in future works
and the loss of stability of BPs by spin waves as well.
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APPENDIX: GENERALIZED SPHERICAL HARMONICS

For completeness we show here the definition of the
functions Y (q)

lm (θ,φ).
Giving the eigenfunctions of the operator Ĵz as �(φ) = eimφ

(with integer m), the polar part of the operator Ĵ2 gives the
equation

−
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− m2 + 2qm cos θ + q2

sin2 θ

]
�

= l(l + 1)�. (A1)

This equation is solved using the general rotation functions
U

(q)
lm (θ ). These functions are related to the Jacobi polynomials
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P (b,c)
n (x) (for integer n) as

U
(q)
lm (θ ) =

[
(l + q)!(l − q)!

(l + m)!(l − m)!

]1/2(1 − x

2

)(q−m)/2

×
(

1 + x

2

)(q+m)/2

P
(q−m,q+m)
l−q (x), (A2)

where x = cos θ . The general rotation functions U
(q)
lm (θ ) are

used to define the generalized spherical harmonics:

Y (q)
lm (θ,φ) ≡ √

2l + 1U
(q)
lm (θ )eimφ, (A3)

that are the eigenfunctions of the whole angular operator with
the properties already mentioned in the text.
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