M. Abid and A. Verga, Stability of a vortex sheet roll-up, Physics of Fluids, vol.82, issue.11, pp.3829-3834, 2002.
DOI : 10.1016/0021-9991(86)90210-X

URL : https://hal.archives-ouvertes.fr/hal-00426551

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.
DOI : 10.1007/s002110050401

E. Arquis and J. Caltagirone, Sur les conditions hydrodynamiques au voisinage d'une interface milieu fluide -milieux poreux: application à la convection naturelle, C R Acad Sci Paris II, issue.299, pp.1-4, 1984.

C. Canuto, M. Hussaini, A. Quateroni, and T. Zang, Spectral methods in fluid dynamics Boundary layer for a penalization method for viscous incompressible flow, Adv Differ Equ, vol.8, pp.1453-1480, 1988.

M. Farge, Wavelet Transforms and their Applications to Turbulence, Annual Review of Fluid Mechanics, vol.24, issue.1, pp.395-457, 1992.
DOI : 10.1146/annurev.fl.24.010192.002143

URL : https://hal.archives-ouvertes.fr/hal-01299264

M. Farge and K. Schneider, Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets, Flow, Turbulence and Combustion, vol.66, issue.4, pp.393-426, 2001.
DOI : 10.1023/A:1013512726409

J. Fröhlich and K. Schneider, An Adaptive Wavelet???Vaguelette Algorithm for the Solution of PDEs, Journal of Computational Physics, vol.130, issue.2, pp.174-190, 1997.
DOI : 10.1006/jcph.1996.5573

H. Higuchi, H. Balligand, and J. Strickland, NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF THE FLOW OVER A DISK UNDERGOING UNSTEADY MOTION, Journal of Fluids and Structures, vol.10, issue.7, pp.705-719, 1996.
DOI : 10.1006/jfls.1996.0049

G. Keetels, U. Ortona, W. Kramer, H. Clercx, K. Schneider et al., Fourier spectral and wavelet solvers for the incompressible Navier???Stokes equations with volume-penalization: Convergence of a dipole???wall collision, Journal of Computational Physics, vol.227, issue.2, pp.919-945, 2007.
DOI : 10.1016/j.jcp.2007.07.036

N. Kevlahan and J. Ghidaglia, Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, European Journal of Mechanics - B/Fluids, vol.20, issue.3, pp.333-350, 2001.
DOI : 10.1016/S0997-7546(00)01121-3

K. Khadra, S. Parneix, P. Angot, and J. Caltagirone, Fictitious domain approach for numerical modelling of Navier-Stokes equations, International Journal for Numerical Methods in Fluids, vol.16, issue.8, pp.651-684, 2000.
DOI : 10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D

D. Kolomenskiy and K. Schneider, A Fourier spectral method for the Navier???Stokes equations with volume penalization for moving solid obstacles, Journal of Computational Physics, vol.228, issue.16, pp.5687-5709, 2009.
DOI : 10.1016/j.jcp.2009.04.026

P. Koumoutsakos and D. Shiels, Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate, Journal of Fluid Mechanics, vol.23, issue.-1, pp.177-227, 1996.
DOI : 10.1137/0118020

P. Luchini and R. Tognaccini, Comparison of viscous and inviscid numerical simulations of the start-up vortex issuing from a semi-infinite flat plate, ESAIM: Proceedings, vol.7, pp.247-257, 1999.
DOI : 10.1051/proc:1999023

P. Luchini and R. Tognaccini, The start-up vortex issuing from a semi-infinite flat plate, Journal of Fluid Mechanics, vol.455, pp.175-193, 2002.
DOI : 10.1017/S0022112001007340

D. Moore, The stability of an evolving two-dimensional vortex sheet, Mathematika, vol.26, issue.01, pp.35-44, 1976.
DOI : 10.1098/rspa.1973.0075

M. Nitsche, Scaling properties of vortex ring formation at a circular tube opening, Physics of Fluids, vol.28, issue.7, pp.1848-1855, 1996.
DOI : 10.1017/S0022112094002508

R. Peyret, Spectral methods for incompressible viscous flow Berlin Pierce D (1961) Photographic evidence of the formation and growth of vorticity behind plates accelerated from rest in still air, J Fluid Mech, vol.148, issue.11, pp.460-464, 2002.

L. Prandtl, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandlungen des III internationalen Mathematiker Kongresses, 1904.

D. Pullin, The large-scale structure of unsteady self-similar rolled-up vortex sheets, Journal of Fluid Mechanics, vol.345, issue.03, pp.401-430, 1978.
DOI : 10.1007/BF00534755

D. Pullin and A. Perry, Some flow visualization experiments on the starting vortex, Journal of Fluid Mechanics, vol.23, issue.02, pp.239-255, 1980.
DOI : 10.1063/1.1722349

P. Saffman, K. Schneider, and M. Farge, Vortex dynamics Adaptive wavelet simulation of a flow around an impulsively started cylinder using penalisation, Appl Comput Harm Anal, vol.12, pp.374-380, 1995.

K. Schneider, Numerical simulation of the transient flow behaviour in chemical reactors using a penalisation method, Computers & Fluids, vol.34, issue.10, pp.1223-1238, 2005.
DOI : 10.1016/j.compfluid.2004.09.006

K. Schneider and M. Farge, Numerical simulation of the transient flow behaviour in tube bundles using a volume penalization method, Journal of Fluids and Structures, vol.20, issue.4, pp.555-566, 2005.
DOI : 10.1016/j.jfluidstructs.2005.02.006

URL : https://hal.archives-ouvertes.fr/hal-01299228

K. Schneider and M. Vasilyev, Wavelet Methods in Computational Fluid Dynamics, Annual Review of Fluid Mechanics, vol.42, issue.1, pp.473-503, 2010.
DOI : 10.1146/annurev-fluid-121108-145637

URL : https://hal.archives-ouvertes.fr/hal-01024632

Z. Wang, J. Liu, and S. Childress, Connection between corner vortices and shear layer instability in flow past an ellipse, Physics of Fluids, vol.11, issue.9, pp.2446-2448, 1999.
DOI : 10.1017/S0022112064000015