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Topological changes of two-dimensional magnetic textures
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(Received 28 January 2013; revised manuscript received 28 March 2014; published 9 April 2014)

We investigate the interaction of magnetic vortices and skyrmions with a spin-polarized current. In a square
lattice, fixed classical spins and quantum itinerant electrons evolve according to the coupled Landau-Lifshitz and
Schrodinger equations. Changes in the topology occur at microscopic time and length scales and are shown to
be triggered by the nucleation of a nontrivial electron-spin structure at the vortex core.
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I. INTRODUCTION

Itinerant magnetism is a fascinating state of matter where
the interplay of short-range coupling (exchange, spin-orbit,
crystal anisotropy) and long-range dipolar interactions lead to
a variety of spatial orders. Experiments show, in particular,
that magnetic structures with nontrivial topology naturally
arise in nanosize ferromagnets and chiral metals. Vortices
are present in confined geometries with closed magnetic flux
lines, such as permalloy nanodots [1-3]; the Dzyaloshinskii-
Moriya spin-orbit coupling in magnetic metals with inversion
asymmetry like bulk MnSi or Fe atomic films favors helical
ordering in the form of a skyrmion lattice [4-6]. The exis-
tence of inhomogeneous metastable states in two-dimensional
isotropic ferromagnets, distinct from the usual domains, was
theoretically predicted by Belavin and Polyakov [7], who
exhibited an asymptotically uniform solution with a reversed
magnetization in the central region. Lattices of skyrmions were
shown to be thermodynamically allowed in chiral magnets,
within a range of applied magnetic fields [8]. The topology
of these magnetization fields can be characterized by their
degree, or topological charge [9]; the skyrmion configuration
realizes a map between the plane (the ferromagnetic film)
and the sphere (the directions of the magnetization vector);
it has therefore an integer topological charge [7,10]. From a
topological point of view, the isolated vortices observed in
nanomagnets are more exotic, since their topological charge
is a half integer [11]. Vortices with an out-of-plane core
magnetization can be viewed as half skyrmions, sometimes
called merons [12,13], because only a half sphere is mapped.
In disk magnets, their stability is ensured by the constraint of
a tangent magnetization at the boundary that minimizes the
dipolar magnetic energy [14].

Interestingly, experiments reveal that these topological con-
figurations can be manipulated not only by external magnetic
fields but also using purely electric means, by a spin-polarized
current through the spin-transfer torque mechanism [15,16].
The polarity of a vortex core can be reversed by applying
a short pulse of an in-plane magnetic field [17], or by a
current [18]. More recently, ultrafast switching of a uniform
magnetization, with the temporary formation of a magnetic
singularity, was achieved in experiments using laser pulses
of circularly polarized light [19,20], a technique that can, in
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principle, also be effective in vortex switching via a topological
inverse Faraday effect [21].

The dynamics of the magnetization at the microscopic scale
is governed by the Landau-Lifshitz equation [22],

h%S:Sxf—an(Sxf), 1)

where S is the dimensionless spin (treated here as a classical
variable proportional to the magnetization in an atomic volume
a®) and f is the effective field derived from the free-energy
functional (A is the Planck constant, « is the damping constant,
and f has the dimensions of energy). This equation takes into
account the exact conservation of the magnetization norm to
its saturation value (for convenience we define |S| = S = 1).
In addition, the special mathematical form of (1), where the
right-hand side is perpendicular to the spin vector, ensures the
conservation of the topological charge [23], defined by

d
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in a two-dimensional system, where x = (x,y) is a point
in the plane perpendicular to z. It is worth noting that the
conservation of the magnetization topology is independent
of the effective field-specific form, and it holds even in the
presence of norm-preserving dissipation and time-dependent
external fields. However, the topology conservation is violated
by stochastic perturbations, related, for instance, to thermal or
quantum fluctuations.

The micromagnetic approach was extensively used in
recent years to investigate the dynamics of magnetic textures
involving monopoles and vortices. In spite of the fact that
the Landau-Lifshitz equation conserves the topology of the
magnetization field, micromagnetic simulations on discrete
lattices proved to be useful in describing complex topological
changes [24]. In particular, these simulations revealed the
importance of the excitation of gyration modes and vortex-
antivortex annihilation in vortex core reversal [25-29].

In this paper we investigate the topological changes of
magnetic textures induced by a spin-polarized current, using
a semiclassical two-dimensional lattice model, in which the
itinerant electrons are quantum and the fixed spins are classical.
The interaction of the itinerant electrons with the fixed ones
gives rise to a spin-transfer torque, generally described in the
quasiadiabatic limit by adding terms in the gradients of the
magnetization,
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where v, is related to the electron-spin-polarized cur-
rent [30,31]. This approximation is not well suited in the
presence of strong magnetization gradients, as it is precisely
the case near vortex cores. In the present model we keep the full
quantum electron dynamics to resolve nonlocal effects that are
fundamental, as we demonstrate, in the mechanisms involving
the change of topology through the formation of magnetic
singularities. As underlined by Miltat and Thiaville [32], the
nucleation of Bloch points and vortex cores are at the edge of
quantum magnetism.

II. LATTICE MODEL OF COUPLED ITINERANT
AND FIXED SPINS

We consider a periodic square lattice of fixed spins S
(classical, | S| = 1) and a single electron that can jump between
neighboring sites i = (x,y) = xX + yy and j (the hopping
energy is €, the electron charge —e, the lattice parameter a, and
size L). Periodic boundary conditions ensure a well-defined
topology of the total system. A constant electric field EX is
applied to create an electron current; this current is polarized
by a fictive magnetic field acting only on the electrons B,.
Electrons and fixed spins are coupled through an exchange
interaction J, which in ferromagnets can be much larger than
the Curie energy J [33]. The electron Hamiltonian is

H,=—€Y ®Ocle; — 1,378 - (cJoc) + H,. (@)
(i.)) i

where ¢; = (c4;,c¢;) is the annihilation operator at site i and
spin-up 1 or spin-down |,. To preserve the lattice periodicity we
used a gauge transformation that introduces a time-dependent
vector potential A = EtX, instead of a static electric potential.
This allows us to take into account the constant electric
field through the phase ¢; ;(t) = (i — j) - XeaEt/h, which is
zero if the neighboring sites i,j are not in the x direction.
The second term accounts for the interaction energy with
the fixed spins (o are the Pauli matrices). The last term,
H,=—u.B, >, cjac,-, allows the current to polarize in
the direction B, (i, is the electron magnetic moment). The
magnetic energy is the sum of exchange J > 0, anisotropy
K (positive or negative for easy-plane or easy-axis cases,
respectively), and Dzyaloshinskii-Moriya D terms,

Hg = %Z(VS,»)2+§ZS§,-—§ZS,'-(VX Si),

&)

where V is here the discrete gradient operator (note that
it is dimensionless). In the following we use units such
that a = € = h = ¢ = 1. The typical microscopic scales are
a ~ 0.3 nm and € ~ 1 eV for a ferromagnet, or a ~ 0.5 nm
and € ~ 0.1 eV for MnSi, given a time unit #) ~ 1-10 fs,
depending on the energy scale; the unit of electric field is about
Ey ~ €/(ea) = 0.1-1 x 10° Vm~! and the unit of current
Iy ~ ee/h =~ 10-100 pA. These small time and length scales,
related to the electron kinetic energy and lattice spacing, are
necessary to track the changes in topology.

The system evolution is governed by the Schrodinger
equation (or, equivalently, the Heisenberg equation for the
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operators) for the electrons,

i¢i(t) = H(t,8:)ci(1), (6)
and (1) for the fixed spins, with f; = —0Hs/9S;,
fi=JV?S; —KS.i+ DV xS+ Jnesi, (7

where s; = (cjaci) is the itinerant electron spin and (c;r ci) =
n. is the number of electrons per lattice site. The last term
gives the spin-transfer torque due to the moving electrons.

At variance to the linear response or quasiadiabatic ap-
proximations, leading to a modified Landau-Lifshitz equa-
tion [31,33,34], we keep the full electron dynamics (6) to
compute the spin-transfer torque in (7) (see Ref. [35] for a
related model). Indeed, the usual approach starts from the
spin-current continuity equation (straightforwardly obtained
from the Schrodinger equation):

as

E—FV-j:JSsxS—F, ®)
where 7 is the spin-current density tensor, and the last term
I', absent in our model, takes into account the dissipation
mechanisms. Equation (8) is then solved by approximating
the spin-transfer torque by a series in the gradients (3), s =~
n.S +48s,and J ~ vy ® S, to obtain [31],

ds~ 8§ xv;-VS+ Pv,-VS. ©)]

Here the first term [30] gives the adiabatic contribution to the
spin-transfer torque, and the second term, referred to as the “8”
term [31,36], is the nonadiabatic contribution coming from
the I" spin relaxation in (8). However, in the presence of large
gradients and strongly nonstationary processes, characteristic
of the topological transitions, the quasiadiabatic approxima-
tion breaks down. In addition, the scattering of the itinerant
electrons by the fixed spin inhomogeneities, might naturally
lead to inhomogeneities in the electron current, also neglected
in this approximation (9), which considers v as a constant. In
our model, the spin-current density J is a dynamical variable
computed from the electron wave function. We see that taking
into account the itinerant electron quantum dynamics reveals
mechanisms such as localization, scattering, and angular and
linear momentum transfers that have an important role in the
changes of the magnetization distribution (fixed spins).

III. CURRENT INDUCED TOPOLOGICAL CHANGES
IN MAGNETIC TEXTURES

We solved numerically the system (1),(6) to compute the
evolution of the magnetization texture S(x,¢) on the discrete
lattice and its coupling with the itinerant spin density s(x,f)
and to monitor changes in the topological charge Q(z). The
Schrodinger equation is solved using an unitary time-splitting
method, and the Landau-Lifshitz equation, a fourth-order
Runge-Kutta time stepping; difference operators are exactly
computed on the lattice using a pseudospectral algorithm. The
time step is tuned to reach machine precision conservation of
the magnetization norm. The initial magnetization distribution
is carefully determined to satisfy the stationary Landau-
Lifshitz equation for vanishing electron current. In practice,
we start with an exact solution of the isotropic (continuous)
magnetization equation (K = D = J; = 0), in the form of

134405-2



TOPOLOGICAL CHANGES OF TWO-DIMENSIONAL ...

PHYSICAL REVIEW B 89, 134405 (2014)

b ) 6 (©)]
1 5
3 L
= = 4
+ 2r +
< <] : 3
of
& &
0 L
-1
bk ‘ ‘ ‘ ‘ | [ ‘ ‘ ‘ b ‘ ‘ ‘ ‘ i
0 2 4 6 8 10 0.0 0.5 1.0 1.5 2.0 0 2 4 6 8 10
t/t, x107° t/t, x107° t/t, x107°
HE &
-1 1
FIG. 1. (Color online) Evolution of the topological charge Q (black) and Q. (red), of a skyrmion lattice (Q = 4 per cell) with x-polarized
electrons (a), a single Q = —1 skyrmion (b), and a vortex array (c), with z-polarized electrons. The insets show the initial magnetization field,
arrows are for the (S, S,) components, and S, is in color, from black S, = —1 to white S, = 1 (bottom color bar). The lattice size is L = 128a

and the applied electric field E/E, = 10~*; electron densities are 1, = 0.02 for the skyrmion lattice (a) and n, = 0.1 for (b) and (c).

localized vortices, and let this distribution evolve in time
with the full lattice Landau-Lifshitz equation (in zero external
electric field £ = 0); the asymptotic stationary state is then
used as the initial condition of the coupled system (1),(6). We
verified that eventual changes of an initial metastable state
(triggered by numerical noise, for example) actually occur
at times much longer than the ones observed after injection
of the electron current; therefore, we may conclude that the
observed changes (notably in the topology of the spin texture)
result from the interaction with the spin-polarized current. We
present results of initial arrays of vortices and skyrmions, and
of isolated structures like the Belavin-Polyakov skyrmion.

The typical parameters used in the simulations are J; =
1, J=0.1,04, K =0, £0.01, D =0,0.01, for the cou-
pling energies in units of €, and o = 0.1 for the Gilbert
constant. Finite values of D are relevant for the skyrmion
lattice [Figs. 1(a) and 2 (top row)]; K < 0 (easy-axis) is
used for the Belavin-Polyakov skyrmion [Figs. 1(b) and 3].
For vortex arrays we have K > 0 (easy-plane) and D =0
[Figs. 1(c), 2 (bottom row), and 4]. The electron density and
electric field are chosen in order to get effective spin-current
densities of the order of the experimental ones (10'> Am™2
in three-dimensional ferromagnets) [18]: n, & 0.1 electrons
per site, E/Eq~ 107°-5 x 107, and a spin polarization
HeB, = 0.1€. We remark, however, that in our model we
neglect dissipation effects other than « relaxation, and as a
consequence, the current density may increase over time (we
fix the electric field); we see below examples of its behavior
(see Figs. 5 and 6).

As an illustration of the rich phenomenology exhibited by
the Schrodinger-Landau-Lifshitz system, we show in Figs. 1
and 2 the topological evolution of skyrmions and vortices in the
presence of initial free electrons subject to an external electric
field [37]. The topological charge (2) decreases or increases by
integer steps A Q = 1. Variations with AQ > 1result from the
superposition of simultaneous and separated-in-space AQ =
1 events. In Fig. 1 we also plot Q,(¢) computed from the
integral of |g|, as in (2),

dx
Q+=/ i lg(x,1),
R2 47T

which is a measure of the number of vortices present in the
system at time ¢ (at variance with Q, it is not a conserved
quantity of the Landau-Lifshitz dynamics). In these examples
we used a strong electric field (E/Eo = 107, equivalent
to 10> Vm™') in order to clearly display the current-vortex
interactions.

We may distinguish two ways leading to a topological
change, according to the value of AQ: the nucleation and
annihilation of same polarity vortex-antivortex pairs that do not
change the total topological charge, AQ = 0; and the reversal
of a vortex core, the suppression of a skyrmion, or other vortex
interactions involving a change AQ = 1. Figure 2 shows the
magnetization at selected times for an initial skyrmion lattice
and an array of vortices, displaying a variety of topological
change events.

The skyrmion lattice may be considered as a superposition
of bounded meron-antimeron pairs [12], double-periodically
distributed in the plane, and having a charge O = 8 x (1/2)
per cell. Under the action of a strong +x-spin electron
current, they wander around as almost independent Q = 1/2
structures (Fig. 2, + = 2000), and when equal-charge pairs
come close together, they annihilate emitting a burst of spin
waves (Fig. 2, t = 4680, 4760 and r = 9004, 9016). Lately,
a uniform magnetization state is reached (Fig. 2, = 9600).
The annihilation events are clearly identified by a discontinuity
AQ = —2, as can be seen in Fig. 1(a).

The vortex array is a superposition of vortex-antivortex
opposite-sign pairs; the total topological charge is then Q = 0.
Even if the total charge vanishes, the dynamics and interactions
of individual structures are highly nontrivial. Subject to a
spin-up current, the vortex array evolution (Fig. 2) in addition
to the vortex annihilation event at times ¢ = 8990-9030,
which is similar to the one observed in the skyrmion case,
shows other interesting processes, such as the nucleation of
vortex-antivortex Q = 0 pairs (t = 4500-7000) from magne-
tization structures created by the polarized electrons (white-red
patches). Each of these events is easily correlated to a sudden
change in Q. [Fig. 1(c)].

In general, the mechanism of a A Q = 1 topological change
entails the formation of a virtual structure (a singularity in
the continuum limit) with a net unit charge opposite to the
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FIG. 2. (Color online) Magnetization texture at selected times, for an initial skyrmion lattice (top row) and vortex array (bottom row),
corresponding to Figs. 1(a) and 1(c), respectively. Vortex interaction results in the change of the topological charge and the emission of spin

waves.

initial charge. For instance, in the case of a Q = 1/2 vortex,
a bump of opposite polarity forms near the core, even when
the vortex is almost at rest, as a result of the torque exerted
by the electrons. At the time when the two peaks approach
close enough, at most a few lattice steps away, a virtual
antivortex should appear to provide the necessary charge to
annihilate the original vortex, then allowing the growing bump
to become a new vortex. This pathway through the AQ =1
change is, with respect to the topology of the magnetization
field, similar to the core reversal phenomenology observed
in micromagnetic simulations for moving [27,38] or static
structures [39,40]. However, at variance to these models where
the driven mechanism is an external time-dependent magnetic
field, here we take into account the self-consistent interaction
with the electron current (maintained by an external, constant,
electric field). In addition to the precession impressed around
the local direction of the spin-polarized current, the action
of the moving electrons s on the fixed spins texture is
twofold: First they reduce the vortex core size through a
nonlocal interaction with the surrounding spin currents and
waves; and second, they are able, by a local spin-transfer
torque, to reverse the orientation of individual spins (strong
non-adiabatic effect). The annihilation of a skyrmion core,

T

W . e (aj.
-1 0 1

_:-](b)

presented in Fig. 3, is significant of the role played by the
itinerant spins in the AQ = 1 topological change.

Figure 3 presents the configuration of the Belavin-Polyakov
skyrmion in the initial stage of the topological change,
corresponding to ¢+ = 1152 in Fig. 1(a). The skyrmion core
was previously deformed by the spin-up polarized current,
increasing the gradient of S, in the x direction [Fig. 3(a)]; as
in the case of a meron core switching, the core of the skyrmion
is ultimately reversed, leaving a Q = 0 final state (at time
t = 1168). One of the main characteristics of the free spins is
its quasistochastic distribution, as one observes in Fig. 3(b).
Remembering that the differentiability of the effective field f
is a necessary condition for the conservation of the topological
charge, the spatiotemporal intermittency of the s = (cfoc)
field is a crucial ingredient in the microscopic mechanism of
the topological change. The origin of this complex behavior
is the multiple quantum scattering of the electron waves on
the magnetization inhomogeneities, as can be verified by
following the evolution of their wave function (compare the
fixed and itinerant spin distributions of Fig. 3). We also show
in Fig. 3 the effective internal magnetic field created by the
fluctuating spin texture of the itinerant electrons,

b=n-d,nxdn, n=s/lsl. (10)

_Ilﬂllﬂll]:Hd)

T ()
0 0.003

FIG. 3. (Color online) Initial stage of the skyrmion annihilation process [t = 11521y; see Fig. 1(b)]: S (a), s (b), spin torque |S x s| (c),
and electron internal magnetic field b Eq. (10) at different times during the topological transition (d); S, contour lines (b)—(d); (sx,sy) arrows
(b)—(d); box size is 64 x 64a? for (a)—(c), and 24 x 24a* for the (d) panel.
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FIG. 4. (Color online) Magnetization and electron b field for the
vortex array case (Fig. 2). The annihilation of equal-charge vortex-
antivortex is accompanied by the nucleation of a strong electron
vortex (black spot at t = 8990¢,). The change A O = 4 corresponds
to the simultaneous destruction of four Q = 1/2 vortex pairs.

It arises when imposing the electron spin direction as the
natural quantization axis, leading to an effective gauge vector
potential a = (n x Vn) - ¢. This is opposite to the usual gauge
transformation that takes the magnetization as the reference
frame to locally rotate the quantization axis (used to eliminate
the electron degrees of freedom from the action) [33,41]. The
remarkable fact about this quantity is that it concentrates
at the vortex core, presenting a strong gradient precisely in
the region where the core is reversing. The relation between
the internal b field and the topological charge density of
the electron spin field allows us to interpret the rotating
opposite-polarity peaks at the center of the vortex core as
being the signature of a nontrivial topological structure that
will trigger the formation of the O = 1 extra charge necessary
to the transition. Therefore, this process is in some sense the
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t/ty x1073

FIG. 5. (Color online) Electron current for skyrmion lattice (a)
and Bleavin-Polyakov (b) and vortex array (c) cases also shown in
Fig. 2. (Iy, the unit of current, is in the range 10~ to 107> A.)

opposite of the quasiadiabatic mechanism: The magnetization
vector, at a microscopic spatiotemporal scale, follows the
dynamics imposed by the itinerant electron spins, which are
the source of the topological change. The formation of an
electron vortex, revealed by the presence of localized structures
with a strong b field, is the main result of this paper. This is
further evidenced by the observation of the topological change
under rather different conditions, as in the annihilation of a
vortex-antivortex pair.

In the case of the vortex array, the z-spin-polarized current
drives the formation of vortex-antivortex pairs, which detach
from the large polarized current aligned patches, as presented
in Fig. 2. (The current density is strongly inhomogeneous, even
for very weak electric fields.) These vortices then interact with
the original vortex array and eventually annihilate with its
equal-sign pair. The detail of the magnetization field around
the annihilation time (¢ &~ 89907)) and the corresponding
b-electron field are presented in Fig. 4. The original negative
polarity vortex [dashed contour lines at time 7000; Fig. 4(b)]
and the nucleated positive polarity vortex (both having Q =
1/2) turn around each other; the negative polarity one is
associated with a positive b field. At time 8990 the two vortices
rotated about 7, and a spot of negative b field appears. From
the color map we note that this electron vortex possesses
a —1 charge, opposite to the Q = 1 charge of the former
vortex-antivortex pair. After the annihilation, a strong emission
of spin waves is observed, and the b-field concentrations
disappear.

From this rich phenomenology of topological changes we
may distinguish (see Table I) (i) the destruction of Belavin-
Polyakov skyrmion subject to a spin current with polarization
antiparallel to its core magnetization, (ii) the equal-sign vortex
annihilation, and (iii) the opposite-sign vortex annihilation.
In cases (i) and (ii), for which the topological charges
change, in spite of their differences the AQ = —1 driving
microscopic mechanism is related to the formation of a
localized electron spin structure (compare Figs. 3 and 4).
Indeed, the superposition of the equal-sign vortex-antivortex
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TABLE I. Elementary topology transformations.

No. Configuration AQ AQ. Description

@) Skyrmion annihilation 1 —1  b-field structure
(i) V-AV*? annihilation -1 —1  Collision, b field
(iii)  V-AV nucleation 0 1 Current gradients
(iv)  V-AV annihilation 0 —1  Collision, smooth

Vortex-antivortex.

of Fig. 4 is topologically similar to the Belavin-Polyakov
skyrmion, both having Q = 1 (or Q = —1).
The electric current in units of Iy is computed from the

formula
0H,
1(0) = —Z< o >

y

an

where the mean is taken over the quantum state c¢;(¢) for all
i = (x0,y) lattice sites at a fixed x = xy position (A = Et
is the x component of the vector potential). It is plotted in
Fig. 5 for the three cases presented in Fig. 1. We remark that
in spite of the dissipationless dynamics of the electrons, the
current is not simply linear in time; it may even be almost
suppressed as in the skyrmion lattice case. In the case of the
Belavin-Polyakov skyrmion, the current increases drastically
only when the vortex core disappears and an almost uniform
magnetization background remains. The actual evolution of
the electric current drastically depends on the magnetization
distribution: The three initial textures lead to very different
current behavior and characteristic orders of magnitude.

We also observed that the electronic density has a minimum
inside the vortex cores, and tends to concentrate between the
vortex structures, in regions with a smooth varying magnetiza-
tion. From this observation one may think that under a certain
threshold, the polarized current would be unable to drive the
topological changes because of its weak interaction with the
vortices. To investigate this point, we performed a series of
simulations of the vortex array for different values of the
electric field and the anisotropy constant. Some representative
results are shown in Fig. 6, where we plot the topological
charge and the electric current as a function of time. For
weak easy-plane anisotropy [K = 0.01, Figs. 6(a) and 6(b)]
and weak electric field (E <« 10™%), the nucleation of vortices
by the polarized current is suppressed; however, it is able to
slowly drive the opposite-sign original vortices close together,

PHYSICAL REVIEW B 89, 134405 (2014)

allowing their AQ = 0 annihilation (times near 50 000 for
E =107 and 20 000 for E = 5 x 107°). The increase of
the easy-plane anisotropy [K = 0.05, Figs. 6(c) and 6(d)]
contributes to the stabilization of the vortex array, and stronger
electric fields are needed to change the topology. A stationary
state naturally arises in the case K = 0.05and E =2 x 107*
of Fig. 6(c). For a stronger electric field, £ =5 x 1074, a
rich dynamics develops, with nucleation and annihilation of
vortices [Fig. 6(d)].

IV. DISCUSSION AND CONCLUSION

This paper focused on the influence of the itinerant electrons
dynamics on the spin-transfer torque and the mechanisms of
topological changes in two-dimensional magnetic textures. We
proposed a simple model with a single coupling parameter
between electrons and fixed magnetic moments, J;. Other
parameters take into account the exchange, anisotropy, and
spin-orbit effects. The unit of energy, which we took as
€ ~ J, and the unit of length a can be considered as effective
parameters whose values depend on the actual physical system.
The J; coupling is typically of the order of the 1 eV in magnetic
metals and one order of magnitude smaller in chiral magnets
or diluted magnetic semiconductors; the exchange constant is
about J/J; = 0.1 [42-44].

The elementary processes involving a topological change
as found in our simulations, are summarized in Table I.
Configuration (i) corresponds to the annihilation of a skyrmion
core; as shown in Fig. 3, this process involves an intermediate
state characterized by an electron-spin structure that can be
revealed by the topological b field (10). A b-field structure is
also present in the annihilation of a nontrivial configuration (ii)
of a vortex-antivortex pair. Vortices of equal-charge annihilate
during collisions and are followed by a burst of spin waves,
as illustrated by the simulations of the skyrmion and vortex
arrays (see Fig. 1 and in the Supplemental Material [37] the
corresponding movies). In contrast, topological trivial config-
urations evolve smoothly, like (iii) and (iv), corresponding, re-
spectively, to nucleation and annihilation of vortex-antivortex
pairs of opposite charges. Vortices are generated in pairs by
traveling blobs of spin-polarized electrons. Indeed, strong
current inhomogeneities naturally appear by interaction of an
initially homogeneous current with existent vortices; further
evolution of these inhomogeneities leads to the nucleation of
V-AV pairs. These elementary processes combine to display a
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FIG. 6. (Color online) Topological charge (top panels, in red Q., Q = 0) and current (bottom panels) for the vortex array case, as a
function of the applied electric field [(a) E = 107>, (b) E =5 x 107°,(c) E =2 x 107*,and (d) E = 5 x 107*, with n, = 0.1] and easy-plane
anisotropy [K = 0.01 in (a) and (b) and K = 0.05 in (c) and (d)]. In (a),(b), at variance to the case of Fig. 4, the change A Q. = 2 corresponds
to the trivial annihilation of two pairs of opposite-charge vortex-antivortex.
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complex dynamics. For example, in the case of vortex arrays,
nucleation of pairs at the edges of electron blobs is followed
by their interaction with preexisting vortices; or isolated
current inhomogeneities in an essentially uniform background
create a cascade of trivial and nontrivial pairs of vortices that
subsequently annihilate [see Supplemental Material [37], the
movie corresponding to the vortex array of Fig. 6(d)].

If one compares these results with previous micromagnetic
simulations including the spin torque term [45-47], one finds
that the phenomenology observed in the self-consistent case
is much richer, even if micromagnetism can capture some of
the elementary mechanisms of nucleation and annihilation.
In order to drive topological changes in the micromagnetic
framework, a current pulse [45] or an imposed stationary cur-
rent inhomogeneity [47] was used. The injection of a current
pulse in a ferromagnet induces the switching of a vortex core
through the nucleation of a vortex-antivortex pair subsequently
annihilated by the formation of a Bloch point [45]. This
process is similar to the case (ii), where the electron spin
texture plays the role of intermediate structure (a Bloch point is
intrinsically three-dimensional, and then it cannot be realized
in our system; however a virtual superposition of a vortex
and an antivortex having the same charge, is topologically
equivalent to a Bloch point). Nucleation events as in case (iii)
were also observed when the system is driven by a rotating
inhomogeneous current density [47]. In this case, the nontrivial
topology of the current density is transferred by spin torque
to the magnetization texture. In our simulations we find that
the current-magnetic texture interaction is accompanied by a
strong modification of the current distribution itself, leading
sometimes to quasistationary states [as in the cases shown in
Figs. 6(a)-6(c)]. Consideration of the electron dynamics makes
it possible to show first that the hypothesis of uniform current
breaks down in the vicinity of vortex cores, that quantum
transmission effects limit the current flow even without explicit
dissipation effects, and, finally, that strongly nonadiabatic
processes (notably through the electron b field) are essential
for the occurrence of topological changes of skyrmions and
equal-charge vortex-antivortex pairs.

The scattering of electrons off magnetization inhomo-
geneities, notably vortex cores, is at the origin of the current
spatial variations and the formation of polarized electron blobs.
We observed that vortex arrays are stabilized by easy-axis
anisotropy, leading to a state characterized by a quasiperiodic
emission of vortices [as in Fig. 6(d)]. One of the reasons
of this stabilization is that the propagation of z-polarized
electrons is limited in an easy-plane medium: the stronger the
anisotropy, the stronger is the applied electric field needed
for generating the same current. Decreasing the electric
field suppresses topological changes and an inhomogeneous
stationary state settles in. The electric field threshold for the
vortex array is found in the interval E/Ey = (2,5) X 107
[compare Figs. 6(c) and 6(d)]. However, the actual threshold
values depend strongly on the anisotropy and other material
and geometric parameters. In the case of the Belavin-Polyakov
skyrmion, our simulations show stability below electric fields
of the order of E/Ey ~ 1073, in the isotropic case K = 0.
Qualitatively, we note that topological changes produced for
currents I 2 21,. These large currents are present in the case
of the annihilation of the Belavin-Polyakov skyrmion or in the
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nucleation of vortices by current blobs. In fact, lower currents
can also induce topological changes, but indirectly, because of
their effect on the motion of vortices that eventually collide, as
in the case of the skyrmion lattice (note that the currents are of
the order I =~ 0.11,). Suppression of nucleation of new vortices
from current inhomogeneities appears to occur below I = 21.
Using a typical value for the current unit in ferromagnet,
Ip~5x 1072 A, and a rough estimation for the current
density as j ~ I/(La), one obtains an order of magnitude
j ~ 10" Am~2. At variance, in the case of a skyrmion lattice
we did not find a minimum current below which vortices
remain static; even currents of the order of 7 /[y ~ 1072 (with
E/Ey = 107°) are able to induce a skyrmion motion.

In summary, we investigated the topological changes in
a two-dimensional ferromagnet driven by a self-consistent
electron current. The Landau-Lifshitz equation is coupled
through the spin-transfer torque term with the Schrodinger
equation for the itinerant spins. At variance to the continuous
micromagnetic models, the system discreteness and, more
importantly, the stochastic behavior of the driven term broke
the conservation of the topological charge. We observed that
both local and nonlocal interactions play a role in the transition
between different topological configurations. In particular,
the electron current tends to concentrate in channels that
avoid the vortex cores: Strong gradients of the magnetization
act as potential barriers, scattering off the electron waves.
The phenomenology of a AQ =1 change of an initial
0 = *1, £ 1/2 vortex, although rich, reduces to a single
topological mechanism, the nucleation of a Q = +£1 charge
that annihilates the old structure, producing the new structure
with the opposite charge or Q = 0. The interesting point
is that this mechanism does not arise spontaneously but is
triggered, above a threshold, by the spin-polarized current. The
electron spin and its associated polarized current are strongly
fluctuating, up to the lattice and time unit scales, which
appear to be the relevant scales for the topological changes
in the dissipationless limit. The spatial inhomogeneity and
localization of the electrons is a general feature, systematically
observed, showing that the systems is relatively far from
the quasiadiabatic regime. The spontaneous nucleation and
annihilation of vortices are, in fact, driven by the strong
inhomogeneity of the electron spin distribution.

At the heart of the topological change is the formation
of an electron nontrivial structure that induces the switching
mechanism of the magnetization in a strongly nonadiabatic
process. This electron structure has a nontrivial topology
characterized by an internal magnetic field. Localized spots
of this field appear during the transition and are observed in
apparently different processes such as the annihilation of the
Belavin-Polyakov skyrmion or the interaction of equal-sign
vortices.

Our model is limited to a simple two-dimensional geometry
and boundary conditions; although it would be interesting
to explore more complex situations, the main open question
is how to obtain a continuous limit (necessary to model
larger systems at longer time scales) that takes into account
the effective dissipative coupling with the electrons (see the
recent papers [41,48], where dissipation and dissipationless
mechanisms are analyzed). In spite of these limitations, the
observation of topological changes driven by spin currents
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should be accessible to experiments with chiral magnets
like MnSi, where the effectiveness of spin-transfer torque
on skyrmion lattices was already demonstrated [49]. More
recently [50], it was proved that individual skyrmions can
be created and annihilated by means of an electron current
injected by a local probe (using the tip of a spin-polarized
scanning tunneling microscope). The system undergoes a
transition from a skyrmion to a ferromagnetic state, as the
one shown in Fig. 1(b). The mechanism of this switching
is attributed to a combination of nonthermal excitations of
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the injected electrons and the spin-transfer torque. Although
a detailed comparison would require further investigation,
these experimental results are in qualitative agreement with
the scenario presented in Fig. 3.
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