J. Liu, S. Chakraborty, P. Hosseinzadeh, Y. Yu, S. Tian et al., Metalloproteins Containing Cytochrome, Iron???Sulfur, or Copper Redox Centers, Chemical Reviews, vol.114, issue.8, pp.4366-4469, 2014.
DOI : 10.1021/cr400479b

I. Bertini, G. Cavallaro, and A. Rosato, Cytochrome c: Occurrence and Functions, ChemInform, vol.106, issue.16, pp.90-115, 2006.
DOI : 10.1021/cr050241v

B. Kartal, N. Almeida, W. Maalcke, H. Camp, M. Jetten et al., How to make a living from anaerobic ammonium oxidation, FEMS Microbiology Reviews, vol.61, issue.3, pp.428-461, 2013.
DOI : 10.1073/pnas.0406475101

B. Kartal and J. Keltjens, Anammox Biochemistry: a Tale of Heme c Proteins, Trends in Biochemical Sciences, vol.41, issue.12, pp.998-1011, 2016.
DOI : 10.1016/j.tibs.2016.08.015

M. Strous, E. Pelletier, S. Mangenot, T. Rattei, A. Lehner et al., Deciphering the evolution and metabolism of an anammox bacterium from a community genome, Nature, vol.52, issue.7085, pp.790-794, 2006.
DOI : 10.1080/10635150390235520

J. Van-de-vossenberg, D. Woebken, W. Maalcke, H. Wessels, B. Dutilh et al., Scalindua profunda??? illustrates the versatility of this globally important nitrogen cycle bacterium, Environmental Microbiology, vol.62, issue.5, pp.1275-1289, 2013.
DOI : 10.1145/1854776.1854803

D. Speth, L. Russ, B. Kartal, H. Op-den-camp, B. Dutilh et al., Draft Genome Sequence of Anammox Bacterium ???Candidatus Scalindua brodae,??? Obtained Using Differential Coverage Binning of Sequencing Data from Two Reactor Enrichments, Genome Announcements, vol.4, issue.1, 2015.
DOI : 10.7287/peerj.preprints.554v1

M. Oshiki, K. Shinyako-hata, H. Satoh, and S. Okabe, Draft genome sequence of an anaerobic ammonium-oxidizing bacterium, 'Candidatus Brocadia sinica', Genome Announc, vol.3, 2015.

C. Outten and O. , Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis, Science, vol.292, issue.5526, pp.2488-2492, 2001.
DOI : 10.1126/science.1060331

J. Posey, F. Gherardini, M. Van-teeseling, R. Mesman, E. Kuru et al., Lack of a role for iron in the Lyme disease pathogen Anammox Planctomycetes have a peptidoglycan cell wall, This study unambiguously shows that anammox bacteria possess a peptidoglycan-containing cell wall, which resolves the controversy on the cell envelope composition of anammox bacteria, pp.1651-16536878, 2000.

L. Van-niftrik, W. Geerts, E. Van-donselaar, B. Humbel, A. Yakushevska et al., Combined structural and chemical analysis of the anammoxosome: A membrane-bounded intracytoplasmic compartment in anammox bacteria, Journal of Structural Biology, vol.161, issue.3, pp.401-410, 2008.
DOI : 10.1016/j.jsb.2007.05.005

B. Kartal, W. Maalcke, N. De-almeida, I. Cirpus, J. Gloerich et al., Molecular mechanism of anaerobic ammonium oxidation, Nature, vol.46, issue.7371, pp.127-130, 2011.
DOI : 10.1016/j.ymeth.2008.09.023

A. Dietl, C. Ferousi, W. Maalcke, A. Menzel, S. De-vries et al., The inner workings of the hydrazine synthase multiprotein complex, Nature, vol.25, issue.7578, pp.394-397, 2015.
DOI : 10.1002/jcc.20084

W. Maalcke, J. Reimann, S. De-vries, J. Butt, A. Dietl et al., -producing Enzyme in the Global Nitrogen Cycle, Journal of Biological Chemistry, vol.546, issue.33
DOI : 10.1016/0003-2697(76)90527-3

R. Zhao, H. Zhang, Y. Li, T. Jiang, and F. Yang, Research of Iron Reduction and the Iron Reductase Localization of Anammox Bacteria, Current Microbiology, vol.5, issue.6, pp.880-887, 2014.
DOI : 10.1038/ngeo1530

J. Van-de-vossenberg, J. Rattray, W. Geerts, B. Kartal, L. Van-niftrik et al., Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production, Environmental Microbiology, vol.208, issue.11, pp.3120-3129, 2008.
DOI : 10.4319/lo.2006.51.5.2145

M. Oshiki, S. Ishii, K. Yoshida, N. Fujii, M. Ishiguro et al., ABSTRACT, Applied and Environmental Microbiology, vol.79, issue.13, pp.4087-4093, 2013.
DOI : 10.1128/AEM.00743-13

L. Shi, H. Dong, G. Reguera, H. Beyenal, A. Lu et al., Extracellular electron transfer mechanisms between microorganisms and minerals, Nature Reviews Microbiology, vol.19, issue.10, pp.651-662, 2016.
DOI : 10.1016/j.bej.2003.09.007

D. Richardson, J. Butt, J. Fredrickson, J. Zachara, L. Shi et al., The ???porin-cytochrome??? model for microbe-to-mineral electron transfer, Molecular Microbiology, vol.8, issue.2, pp.201-212, 2012.
DOI : 10.1074/mcp.M800232-MCP200

M. Fillat, The FUR (ferric uptake regulator) superfamily: Diversity and versatility of key transcriptional regulators, Archives of Biochemistry and Biophysics, vol.546, pp.41-52, 2014.
DOI : 10.1016/j.abb.2014.01.029

N. Frankenberg, J. Moser, and D. Jahn, Bacterial heme biosynthesis and its biotechnological application, Applied Microbiology and Biotechnology, vol.63, issue.2, pp.115-127, 2003.
DOI : 10.1007/s00253-003-1432-2

G. Layer, J. Reichelt, D. Jahn, and D. Heinz, Structure and function of enzymes in heme biosynthesis, Protein Science, vol.154, issue.Part 2, pp.1137-1161, 2010.
DOI : 10.1042/bj2260537

H. Dailey, S. Gerdes, T. Dailey, J. Burch, and J. Phillips, Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin, Proceedings of the National Academy of Sciences, vol.62, issue.4, pp.2210-2215
DOI : 10.1038/nature12347

URL : http://www.pnas.org/content/112/7/2210.full.pdf

T. Ishida, L. Yu, H. Akutsu, K. Ozawa, S. Kawanishi et al., A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris, Proceedings of the National Academy of Sciences, vol.51, issue.2, pp.4853-4858, 1998.
DOI : 10.1128/jb.177.20.5778-5783.1995

S. Bali, A. Lawrence, S. Lobo, L. Saraiva, B. Golding et al., Molecular hijacking of siroheme for the synthesis of heme and d1 heme, Proceedings of the National Academy of Sciences, vol.34, issue.1, pp.18260-18265, 2011.
DOI : 10.1016/j.tibs.2008.10.005

S. Bali, D. Palmer, S. Schroeder, S. Ferguson, and M. Warren, Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d 1, Cellular and Molecular Life Sciences, vol.269, issue.34, pp.2837-2863, 2014.
DOI : 10.1016/S0959-440X(96)80003-0

A. Ducluzeau and W. Nitschke, When Did Hemes Enter the Scene of Life? On the Natural History of Heme Cofactors and Heme-Containing Enzymes, Adv Photosynth Respir, vol.8, pp.13-24, 2016.
DOI : 10.1016/0022-5193(65)90083-4

URL : https://hal.archives-ouvertes.fr/hal-01430197

C. De-vitry, Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB or System IV, FEBS Journal, vol.2, issue.22, pp.4189-4197, 2011.
DOI : 10.1038/ncomms1299

R. Kranz, C. Richard-fogal, J. Taylor, and E. Frawley, Cytochrome c Biogenesis: Mechanisms for Covalent Modifications and Trafficking of Heme and for Heme-Iron Redox Control, Microbiology and Molecular Biology Reviews, vol.73, issue.3, pp.510-528, 2009.
DOI : 10.1128/MMBR.00001-09

L. Van-niftrik, W. Geerts, E. Van-donselaar, B. Humbel, R. Webb et al., Linking Ultrastructure and Function in Four Genera of Anaerobic Ammonium-Oxidizing Bacteria: Cell Plan, Glycogen Storage, and Localization of Cytochrome c Proteins, Journal of Bacteriology, vol.190, issue.2, pp.708-717, 2008.
DOI : 10.1128/JB.01449-07

C. Ferousi, D. Speth, J. Reimann, H. Op-den-camp, J. Allen et al., Identification of the type II cytochrome c maturation pathway in anammox bacteria by comparative genomics, BMC Microbiology, vol.13, issue.1, p.265, 2013.
DOI : 10.1016/j.sbi.2008.02.002

B. Roche, L. Aussel, B. Ezraty, P. Mandin, B. Py et al., Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.3, pp.455-469, 2013.
DOI : 10.1016/j.bbabio.2012.12.010

S. Bandyopadhyay, K. Chandramouli, and M. Johnson, Iron???sulfur cluster biosynthesis, Biochemical Society Transactions, vol.36, issue.6, pp.1112-1119, 2008.
DOI : 10.1042/BST0361112

J. Frazzon and D. Dean, Formation of iron???sulfur clusters in bacteria: an emerging field in bioinorganic chemistry, Current Opinion in Chemical Biology, vol.7, issue.2, pp.166-173, 2003.
DOI : 10.1016/S1367-5931(03)00021-8

E. Nyvltova, R. Sutak, K. Harant, M. Sedinova, I. Hrdy et al., NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi, Proceedings of the National Academy of Sciences, vol.11, issue.1, pp.7371-7376
DOI : 10.1016/0003-2697(65)90051-5

A. Wilks, Heme Oxygenase: Evolution, Structure, and Mechanism, Antioxidants & Redox Signaling, vol.4, issue.4, pp.603-614, 2002.
DOI : 10.1089/15230860260220102

J. Lamattina, D. Nix, and W. Lanzilotta, O157:H7, Proceedings of the National Academy of Sciences, vol.238, issue.43, pp.12138-12143
DOI : 10.1093/bioinformatics/btp033

S. Andrews, Iron Storage in Bacteria, Adv Microb Physiol, vol.40, pp.281-351, 1998.
DOI : 10.1016/S0065-2911(08)60134-4

M. Sutter, D. Boehringer, S. Gutmann, S. Gunther, D. Prangishvili et al., Structural basis of enzyme encapsulation into a bacterial nanocompartment, Nature Structural & Molecular Biology, vol.6, issue.9, pp.939-947, 2008.
DOI : 10.1016/S0022-2836(05)80360-2

C. Mchugh, J. Fontana, D. Nemecek, N. Cheng, A. Aksyuk et al., A virus capsid???like nanocompartment that stores iron and protects bacteria from oxidative stress, The EMBO Journal, vol.33, issue.17, pp.1896-1911, 2014.
DOI : 10.15252/embj.201488566

T. Giessen, Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science, Current Opinion in Chemical Biology, vol.34, pp.1-10, 2016.
DOI : 10.1016/j.cbpa.2016.05.013

T. Giessen and P. Silver, Widespread distribution of encapsulin nanocompartments reveals functional diversity, Nature Microbiology, vol.5, pp.1-11, 2017.
DOI : 10.1038/nmeth.1701