Look-Up Tables for Medial Axis on Squared Euclidean Distance Transform

Abstract : Medial Axis (MA), also known as Centres of Maximal Disks, is a useful representation of a shape for image description and analysis. MA can be computed on a distance transform, where each point is labelled to its distance to the background. Recent algorithms allow to compute Squared Euclidean Distance Transform (SEDT) in linear time in any dimension. While these algorithms provide exact measures, the only known method to characterize MA on SEDT, using local tests and Look-Up Tables, is limited to 2D and small distance values [5]. We have proposed in [14] an algorithm which computes the look-up table and the neighbourhood to be tested in the case of chamfer distances. In this paper, we adapt our algorithm for SEDT in arbitrary dimension and show that results have completely different properties.
Document type :
Conference papers
Complete list of metadatas

Contributor : Eric Remy <>
Submitted on : Thursday, April 6, 2017 - 11:41:03 AM
Last modification on : Tuesday, April 2, 2019 - 2:03:26 AM

Links full text



Eric Remy, Edouard Thiel. Look-Up Tables for Medial Axis on Squared Euclidean Distance Transform. Discrete Geometry for Computer Imagery, Nyström I., Sanniti di Baja G., Svensson S., Nov 2003, Naples, Italy. pp.224-235, ⟨10.1007/978-3-540-39966-7_21⟩. ⟨hal-01502840⟩



Record views