B. Karn, T. Kuiken, and M. Otto, Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks, Environmental Health Perspectives, vol.117, issue.12, pp.1823-1831, 2009.
DOI : 10.1289/ehp.0900793.s1

F. Gottschalk and B. Nowack, The release of engineered nanomaterials to the environment, Journal of Environmental Monitoring, vol.158, issue.5, pp.1145-1155, 2011.
DOI : 10.1016/j.envpol.2010.06.009

V. Colvin, The potential environmental impact of engineered nanomaterials, Nature Biotechnology, vol.17, issue.10, pp.1166-1170, 2003.
DOI : 10.1002/1099-0690(200209)2002:17<2928::AID-EJOC2928>3.0.CO;2-I

A. Boxall, K. Tiede, and Q. Chaudhry, Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health?, Nanomedicine, vol.41, issue.6, pp.919-927, 2007.
DOI : 10.1021/es062572a

W. Hannah and P. Thompson, Nanotechnology, risk and the environment: a review, Journal of Environmental Monitoring, vol.197, issue.9, pp.291-300, 2008.
DOI : 10.1164/ajrccm.164.9.2101036

G. Batley, J. Kirby, and M. Mclaughlin, Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments, Accounts of Chemical Research, vol.46, issue.3, pp.854-862, 2013.
DOI : 10.1021/ar2003368

R. Beckett and N. Le, The role or organic matter and ionic composition in determining the surface charge of suspended particles in natural waters, Colloids and Surfaces, vol.44, pp.35-49, 1990.
DOI : 10.1016/0166-6622(90)80185-7

J. Liu, S. Legros, V. Der-kammer, F. Hofmann, and T. , Natural Organic Matter Concentration and Hydrochemistry Influence Aggregation Kinetics of Functionalized Engineered Nanoparticles, Environmental Science & Technology, vol.47, issue.9, pp.4113-4120, 2013.
DOI : 10.1021/es302447g

M. Baalousha, Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter, Science of The Total Environment, vol.407, issue.6, pp.2093-2101, 2009.
DOI : 10.1016/j.scitotenv.2008.11.022

G. Aiken, H. Hsu-kim, and J. Ryan, Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids, Environmental Science & Technology, vol.45, issue.8, pp.3196-3201, 2011.
DOI : 10.1021/es103992s

S. Majedi, B. Kelly, and H. Lee, Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems: A multiparametric analysis, Journal of Hazardous Materials, vol.264, pp.370-379, 2014.
DOI : 10.1016/j.jhazmat.2013.11.015

J. Gallego-urrea, P. Holmberg, J. Hasselï-ov, and M. , Influence of different types of natural organic matter on titania nanoparticle stability: effects of counter ion concentration and pH, Environ. Sci.: Nano, vol.47, issue.2, pp.181-189, 2014.
DOI : 10.1016/j.watres.2013.06.015

T. Abe, S. Kobayashi, and M. Kobayashi, Aggregation of colloidal silica particles in the presence of fulvic acid, humic acid, or alginate: Effects of ionic composition, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.379, issue.1-3, pp.1-321, 2011.
DOI : 10.1016/j.colsurfa.2010.11.052

M. Erhayem and M. Sohn, Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles, Science of The Total Environment, vol.470, issue.471, pp.470-47192, 2014.
DOI : 10.1016/j.scitotenv.2013.09.063

M. Erhayem and M. Sohn, Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter, Science of The Total Environment, vol.468, issue.469, pp.249-257, 2014.
DOI : 10.1016/j.scitotenv.2013.08.038

A. Deonarine, B. Lau, G. Aiken, J. Ryan, and H. Hsu-kim, Effects of Humic Substances on Precipitation and Aggregation of Zinc Sulfide Nanoparticles, Environmental Science & Technology, vol.45, issue.8, pp.3217-3223, 2011.
DOI : 10.1021/es1029798

B. Pan and B. Xing, Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes, Environmental Science & Technology, vol.42, issue.24, pp.9005-9013, 2008.
DOI : 10.1021/es801777n

F. Hesselink, . Vrij-a, and J. Overbeek, Theory of the stabilization of dispersions by adsorbed macromolecules. II. Interaction between two flat particles, The Journal of Physical Chemistry, vol.75, issue.14, pp.2094-2103, 1971.
DOI : 10.1021/j100683a005

D. Napper, Steric stabilization, Journal of Colloid and Interface Science, vol.58, issue.2, pp.390-407, 1977.
DOI : 10.1016/0021-9797(77)90150-3

K. Chen, S. Mylon, and M. Elimelech, Enhanced Aggregation of Alginate-Coated Iron Oxide (Hematite) Nanoparticles in the Presence of Calcium, Strontium, and Barium Cations, Langmuir, vol.23, issue.11, pp.5920-5928, 2007.
DOI : 10.1021/la063744k

G. Fleer and J. Lyklema, Polymer adsorption and its effect on the stability of hydrophobic colloids. II. The flocculation process as studied with the silver iodide-polyvinyl alcohol system, Journal of Colloid and Interface Science, vol.46, issue.1, pp.1-12, 1974.
DOI : 10.1016/0021-9797(74)90018-6

E. Pelssers, M. Stuart, and G. Fleer, Kinetic aspects of polymer bridging: Equilibrium flocculation and nonequilibrium flocculation, Colloids and Surfaces, vol.38, issue.1, pp.15-25, 1989.
DOI : 10.1016/0166-6622(89)80139-8

G. John, Polymer adsorption and flocculation in sheared suspensions, Colloids Surf, vol.31, pp.231-253, 1988.

J. Labille, F. Thomas, M. Milas, and C. Vanhaverbeke, Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure, Journal of Colloid and Interface Science, vol.284, issue.1, pp.149-156, 2005.
DOI : 10.1016/j.jcis.2004.10.001

URL : https://hal.archives-ouvertes.fr/hal-00110223

S. Louie, R. Tilton, and G. Lowry, Critical review: impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials, Environmental Science: Nano, vol.14, issue.26, pp.283-310, 2016.
DOI : 10.1021/ma50007a007

A. Philippe and G. Schaumann, Interactions of Dissolved Organic Matter with Natural and Engineered Inorganic Colloids: A Review, Environmental Science & Technology, vol.48, issue.16, pp.8946-8962, 2014.
DOI : 10.1021/es502342r

R. Grillo, A. Rosa, and L. Fraceto, Engineered nanoparticles and organic matter: A review of the state-of-the-art, Chemosphere, vol.119, pp.608-619, 2015.
DOI : 10.1016/j.chemosphere.2014.07.049

E. Goldberg, M. Scheringer, T. Bucheli, and K. Hungerbuehler, Prediction of nanoparticle transport behavior from physicochemical properties: machine learning provides insights to guide the next generation of transport models, Environmental Science: Nano, vol.114, issue.4, pp.352-360, 2015.
DOI : 10.1029/2008JB005948

M. Filella, Freshwaters: which NOM matters?, Environmental Chemistry Letters, vol.330, issue.Part I, pp.21-35, 2008.
DOI : 10.1016/j.scitotenv.2004.03.002

R. Beckett, Z. Jue, and J. Giddings, Determination of molecular weight distributions of fulvic and humic acids using flow field-flow fractionation, Environmental Science & Technology, vol.21, issue.3, pp.289-295, 1987.
DOI : 10.1021/es00157a010

Y. Chin, G. Aiken, O. Loughlin, and E. , Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances, Environmental Science & Technology, vol.28, issue.11, pp.1853-1858, 1994.
DOI : 10.1021/es00060a015

V. Esteves, M. Otero, and A. Duarte, Comparative characterization of humic substances from the open ocean, estuarine water and fresh water, Organic Geochemistry, vol.40, issue.9, pp.942-950, 2009.
DOI : 10.1016/j.orggeochem.2009.06.006

I. Perminova, Molecular Weight Characteristics of Humic Substances from Different Environments As Determined by Size Exclusion Chromatography and Their Statistical Evaluation, Environmental Science & Technology, vol.37, issue.11, pp.2477-2485, 2003.
DOI : 10.1021/es0258069

R. Malcolm, The uniqueness of humic substances in each of soil, stream and marine environments, Analytica Chimica Acta, vol.232, pp.19-30, 1990.
DOI : 10.1016/S0003-2670(00)81222-2

R. Malcolm, P. Maccarthy, E. Clapp, R. Malcolm, and P. Bloom, Variations between humic substances isolated from soils, stream waters, and groundwaters as revealed by C-NMR spectroscopy Humic Substances in Soil and Crop Sciences: Selected Readings, pp.13-35, 1990.

D. Slomberg, Insights into natural organic matter and pesticide characterisation and distribution in the Rhone River, Environmental Chemistry, vol.14, issue.1, pp.64-73, 2016.
DOI : 10.1071/EN16038

URL : https://hal.archives-ouvertes.fr/insu-01492676

W. Chen, C. Qian, X. Liu, and H. Yu, Nanoparticles, Environmental Science & Technology, vol.48, issue.19, pp.11119-11126, 2014.
DOI : 10.1021/es502502n

URL : https://hal.archives-ouvertes.fr/hal-01566583

S. Ghosh, Z. Wang, S. Kang, P. Bhowmik, and B. Xing, Sorption and Fractionation of a Peat Derived Humic Acid by Kaolinite, Montmorillonite, and Goethite, Pedosphere, vol.19, issue.1, pp.21-30, 2009.
DOI : 10.1016/S1002-0160(08)60080-6

S. Louie, E. Spielman-sun, M. Small, R. Tilton, and G. Lowry, Correlation of the Physicochemical Properties of Natural Organic Matter Samples from Different Sources to Their Effects on Gold Nanoparticle Aggregation in Monovalent Electrolyte, Environmental Science & Technology, vol.49, issue.4, pp.2188-2198, 2015.
DOI : 10.1021/es505003d

A. Simpson, M. Simpson, and R. Soong, Nuclear Magnetic Resonance Spectroscopy and Its Key Role in Environmental Research, Environmental Science & Technology, vol.46, issue.21, pp.11488-11496, 2012.
DOI : 10.1021/es302154w

M. Thomsen, Characterisation of humic materials of different origin: A multivariate approach for quantifying the latent properties of dissolved organic matter, Chemosphere, vol.49, issue.10, pp.1327-1337, 2002.
DOI : 10.1016/S0045-6535(02)00335-1

B. Worobey and G. Webster, Indigenous 13C-NMR structural features of soil humic substances, Nature, vol.48, issue.5823, pp.526-529, 1981.
DOI : 10.1016/S0006-291X(76)80240-9

V. Stone, Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation, Science of The Total Environment, vol.408, issue.7, pp.1745-1754, 2010.
DOI : 10.1016/j.scitotenv.2009.10.035

URL : http://orbit.dtu.dk/en/publications/nanomaterials-for-environmental-studies-classification-reference-material-issues-and-strategies-for-physicochemical-characterisation(5c0f4310-2405-4cb7-bf9d-7245f68cee09).html

M. Newman, The Structure and Function of Complex Networks, SIAM Review, vol.45, issue.2, pp.167-256, 2003.
DOI : 10.1137/S003614450342480

A. Asratian, T. Denley, and R. Haggkvist, Introduction to bipartite graphs. Bipartite Graphs their Applications, pp.7-22, 1998.
DOI : 10.1017/cbo9780511984068.004

L. Costa, F. Rodrigues, and G. Travieso, Characterization of complex networks: A survey of measurements, Advances in Physics, vol.14, issue.1, pp.167-242
DOI : 10.1073/pnas.172501399

R. Williams and P. Alivisatos, Nanotechnology Research Directions: IWGN Workshop Report Vision for Nanotechnology in the Next Decade The Nether- lands), 2000.

H. Lecoanet, J. Bottero, and M. Wiesner, Laboratory Assessment of the Mobility of Nanomaterials in Porous Media, Environmental Science & Technology, vol.38, issue.19, pp.5164-5169, 2004.
DOI : 10.1021/es0352303

Z. Wang, L. Zhang, J. Zhao, and B. Xing, Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter, Environmental Science: Nano, vol.34, issue.2, pp.240-255, 2016.
DOI : 10.1002/etc.2855

S. Ottofuelling, V. Der-kammer, F. Hofmann, and T. , Commercial Titanium Dioxide Nanoparticles in Both Natural and Synthetic Water: Comprehensive Multidimensional Testing and Prediction of Aggregation Behavior, Environmental Science & Technology, vol.45, issue.23, pp.10045-10052, 2011.
DOI : 10.1021/es2023225

D. Navarro, D. Watson, D. Aga, and S. Banerjee, Natural Organic Matter-Mediated Phase Transfer of Quantum Dots in the Aquatic Environment, Environmental Science & Technology, vol.43, issue.3, pp.677-682, 2009.
DOI : 10.1021/es8017623

J. Labille, Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment, Environmental Pollution, vol.158, issue.12, pp.3482-3489, 2010.
DOI : 10.1016/j.envpol.2010.02.012

URL : https://hal.archives-ouvertes.fr/hal-01519536

B. Lau, W. Hockaday, K. Ikuma, O. Furman, and A. Decho, A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.435, pp.22-27, 2013.
DOI : 10.1016/j.colsurfa.2012.11.065

Y. Yin, Particle Coating-Dependent Interaction of Molecular Weight Fractionated Natural Organic Matter: Impacts on the Aggregation of Silver Nanoparticles, Environmental Science & Technology, vol.49, issue.11, pp.6581-6589, 2015.
DOI : 10.1021/es5061287

R. Handy, R. Owen, and E. Valsami-jones, The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs, Ecotoxicology, vol.62, issue.5, pp.315-325, 2008.
DOI : 10.4319/lo.1997.42.8.1714

D. Hristozov, S. Gottardo, A. Critto, and A. Marcomini, Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective, Nanotoxicology, vol.0, issue.8, pp.880-898, 2012.
DOI : 10.1080/17435390902725914

M. Weisberg and R. Muldoon, Epistemic Landscapes and the Division of Cognitive Labor*, Philosophy of Science, vol.76, issue.2, pp.225-252, 2009.
DOI : 10.1086/644786

. Caplus, Chemical Abstracts Service: Columbus, OH), 2006; AN 1995:429860. Available at: https://scifinder.cas.org, 2015.

S. Amir, M. Hafidi, G. Merlina, H. Hamdi, and J. Revel, Elemental analysis, FTIR and 13C-NMR of humic acids from sewage sludge composting, Agronomie, vol.24, issue.1, pp.13-18, 2004.
DOI : 10.1051/agro:2003054

URL : https://hal.archives-ouvertes.fr/hal-00886235

F. Gonzalez-vila, L. ¨. , H. Martin, and F. , 3C-NMR structural features of soil humic acids and their methylated, hydrolyzed and extracted derivatives, Geoderma, vol.31, issue.1, pp.3-15, 1983.
DOI : 10.1016/0016-7061(83)90080-0

G. Csardi and T. Nepusz, The igraph software package for complex network research Available at https://pdfs.semanticscholar.org/1d27/44b83519657f5f2610698a8ddd177- ced4f5c.pdf, 2006.

R. Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013.

P. Harbour, D. Dixon, and P. Scales, The role of natural organic matter in suspension stability. 1. Electrokinetic-rheology relationships, Colloids Surf A Physicochem Eng Asp, vol.295, pp.1-338, 2007.

S. Louie, R. Tilton, and G. Lowry, Effects of Molecular Weight Distribution and Chemical Properties of Natural Organic Matter on Gold Nanoparticle Aggregation, Environmental Science & Technology, vol.47, issue.9, pp.4245-4254, 2013.
DOI : 10.1021/es400137x

J. Pinheiro, D. Bates, S. Debroy, and D. Sarkar, nlme: Linear and nonlinear mixed effects models (R Foundation for Statistical Computing, 2013.

A. Canty and B. Ripley, boot: Bootstrap R (S-Plus) functions (R Foundation for Statistical Computing, 2016.

. Wickham, ggplot2: Elegant Graphics for Data Analysis, 2009.

K. Slowikowski, ggrepel: Repulsive text and label geoms for 'ggplot2'. Available at https://cran.rstudio.com/web/packages/ggrepel/ggrepel.pdf, 2016.