DOI : 10.1016/0304-3770(79)90047-0

K. Aulio, CAM-like Photosynthesis in Littorella uniflora (L.) Aschers.: The Role of Humidity, Annals of Botany, vol.58, issue.2, pp.273-275, 1986.
DOI : 10.1093/oxfordjournals.aob.a087205

A. Baattrup-pedersen and T. Madsen, (L.) Aschers, Plant, Cell & Environment, vol.82, issue.5, pp.535-542, 1999.
DOI : 10.1007/BF00318535

M. Black, S. Maberly, and D. Spence, RESISTANCES TO CARBON DIOXIDE FIXATION IN FOUR SUBMERGED FRESHWATER MACROPHYTES, New Phytologist, vol.18, issue.4, pp.557-568, 1981.
DOI : 10.1007/BF00397128

A. Borland, H. Griffiths, C. Maxwell, M. Fordham, and M. Broadmeadow, CAM induction in Clusia minor L. during the transition from wet to dry season in Trinidad: the role of organic acid speciation and decarboxylation, Plant, Cell and Environment, vol.102, issue.6, pp.655-664, 1996.
DOI : 10.1007/BF00650323

A. Borland and T. Taybi, Synchronization of metabolic processes in plants with Crassulacean acid metabolism, Journal of Experimental Botany, vol.2, issue.9, pp.1255-1265, 2004.
DOI : 10.1038/35088576

G. Bowes, Single-cell C4 photosynthesis in aquatic plants photosynthesis and related CO2 concentrating mechanisms, pp.4-63, 2011.
DOI : 10.1007/978-90-481-9407-0_5

G. Bowes, S. Rao, G. Estavillo, and J. Reiskind, C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems, Functional Plant Biology, vol.29, issue.3, pp.379-392, 2002.
DOI : 10.1071/PP01219

G. Bowes and M. Salvucci, Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes, Aquatic Botany, vol.34, issue.1-3, pp.233-266, 1989.
DOI : 10.1016/0304-3770(89)90058-2

R. Brain and K. Solomon, A protocol for conducting 7-day daily renewal tests with Lemna gibba, Nature Protocols, vol.133, issue.4, pp.979-987, 2007.
DOI : 10.1038/nprot.2007.146

P. Casati, M. Lara, and C. Andreo, , a Submersed Aquatic Species, Plant Physiology, vol.123, issue.4, pp.1611-1622, 2000.
DOI : 10.1104/pp.123.4.1611

J. Ceusters, A. Borland, E. Londers, V. Verdoodt, C. Godts et al., Diel Shifts in Carboxylation Pathway and Metabolite Dynamics in the CAM Bromeliad Aechmea ???Maya??? in Response to Elevated CO2, Annals of Botany, vol.22, issue.3, pp.389-397, 2008.
DOI : 10.1046/j.1365-3040.1999.00451.x

J. Cushman and H. Bohnert, Molecular Genetics of Crassulacean Acid Metabolism, Plant Physiology, vol.113, issue.3, pp.305-332, 1999.
DOI : 10.1104/pp.113.3.667

E. Delhaize, P. Ryan, and P. Randall, Aluminum Tolerance in Wheat (Triticum aestivum L.) (II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices), Plant Physiology, vol.103, issue.3, pp.695-702, 1993.
DOI : 10.1104/pp.103.3.695

URL : http://www.plantphysiol.org/content/plantphysiol/103/3/685.full.pdf

L. Guralnick, G. Edwards, M. Ku, B. Hockema, and V. Franceschi, Photosynthetic and anatomical characteristics in the C 4 crassulacean acid metabolism-cycling plant, Portulaca grandiflora, Functional Plant Biology, vol.29, issue.6, pp.763-773, 2002.
DOI : 10.1071/PP01176

A. Herrera, Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for?, Annals of Botany, vol.102, issue.4, pp.645-653, 2009.
DOI : 10.1104/pp.102.3.835

O. Hostrup and G. Wiegleb, The influence of different CO2 concentrations in the light and the dark on diurnal malate rhythm and phosphoenolpyruvate carboxylase activities in leaves of Littorella uniflora (L.) Aschers., Aquatic Botany, vol.40, issue.1, pp.91-100, 1991.
DOI : 10.1016/0304-3770(91)90076-H

J. Keeley, ISOETES HOWELLII: A SUBMERGED AQUATIC CAM PLANT?, American Journal of Botany, vol.66, issue.4, pp.420-424, 1981.
DOI : 10.2307/1546463

J. Keeley, DISTRIBUTION OF DIURNAL ACID METABOLISM IN THE GENUS ISOETES, American Journal of Botany, vol.68, issue.2, pp.254-257, 1982.
DOI : 10.2307/1546480

J. Keeley, C 4 photosynthetic modifications in the evolutionary transition from land to water in aquatic grasses, Oecologia, vol.116, issue.1-2, pp.85-97, 1998.
DOI : 10.1007/s004420050566

J. Keeley, CAM photosynthesis in submerged aquatic plants, The Botanical Review, vol.57, issue.2, pp.121-175, 1998.
DOI : 10.1007/978-1-4613-8162-4

J. Keeley and P. Rundel, Carbon???Concentrating Mechanisms, International Journal of Plant Sciences, vol.164, issue.S3, pp.55-77, 2003.
DOI : 10.1086/374192

J. Keeley, C. Walker, and R. Mathews, Crassulacean acid metabolism in Isoetes bolanderi in high elevation oligotrophic lakes, Oecologia, vol.25, issue.1, pp.63-69, 1983.
DOI : 10.1007/BF00384543

S. Klavsen, T. Madsen, and S. Maberly, Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review, Photosynthesis Research, vol.129, issue.1-3, pp.269-279, 2011.
DOI : 10.1007/978-3-642-79060-7_1

K. Koch and R. Kennedy, Crassulacean Acid Metabolism in the Succulent C4 Dicot, Portulaca oleracea L Under Natural Environmental Conditions, PLANT PHYSIOLOGY, vol.69, issue.4, pp.757-761, 1982.
DOI : 10.1104/pp.69.4.757

S. Maberly, The fitness of the environments of air and water for photosynthesis, growth, reproduction and dispersal of photoautotrophs: An evolutionary and biogeochemical perspective, Aquatic Botany, vol.118, pp.4-13, 2014.
DOI : 10.1016/j.aquabot.2014.06.014

S. Maberly and T. Madsen, Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO-3, Functional Ecology, vol.12, issue.1, pp.99-106, 1998.
DOI : 10.1104/pp.58.6.761

S. Maberly and T. Madsen, Freshwater angiosperm carbon concentrating mechanisms: processes and patterns, Functional Plant Biology, vol.29, issue.3, pp.393-405, 2002.
DOI : 10.1071/PP01187

T. Madsen, The effect of different growth conditions on dark and light carbon assimilation in Littorella uniflora, Physiologia Plantarum, vol.9, issue.2, pp.183-188, 1987.
DOI : 10.1016/0304-3770(79)90047-0

T. Madsen and S. Maberly, Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate, Freshwater Biology, vol.25, issue.Suppl, pp.175-187, 1991.
DOI : 10.1111/j.1399-3054.1971.tb01436.x

T. Madsen, B. Olesen, and J. Bagger, Carbon acquisition and carbon dynamics by aquatic isoetids, Aquatic Botany, vol.73, issue.4, pp.351-371, 2002.
DOI : 10.1016/S0304-3770(02)00030-X

T. Madsen and K. Sand-jensen, Photosynthetic carbon assimilation in aquatic macrophytes, Aquatic Botany, vol.41, issue.1-3, pp.5-40, 1991.
DOI : 10.1016/0304-3770(91)90037-6

H. Nimmo, The regulation of phosphoenolpyruvate carboxylase in CAM plants, Trends in Plant Science, vol.5, issue.2, pp.75-80, 2000.
DOI : 10.1016/S1360-1385(99)01543-5

C. Osmond, Crassulacean Acid Metabolism: A Curiosity in Context, Annual Review of Plant Physiology, vol.29, issue.1, pp.379-414, 1978.
DOI : 10.1146/annurev.pp.29.060178.002115

O. Pedersen, S. Rich, C. Pulido, G. Cawthray, and T. Colmer, Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis, New Phytologist, vol.58, issue.2, pp.332-339, 2011.
DOI : 10.1104/pp.58.6.761

M. Rattray, D. Webb, and J. Brown, A. Braun, New Zealand Journal of Marine and Freshwater Research, vol.16, issue.3-4, pp.465-470, 1992.
DOI : 10.1080/00288330.1988.9516295

URL : https://hal.archives-ouvertes.fr/hal-01602386

J. Raven, EXOGENOUS INORGANIC CARBON SOURCES IN PLANT PHOTOSYNTHESIS, Biological Reviews, vol.9, issue.8, pp.167-221, 1970.
DOI : 10.1146/annurev.pp.20.060169.001553

J. Raven, C. Cockell, D. L. Rocha, and C. , The evolution of inorganic carbon concentrating mechanisms in photosynthesis, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.57, issue.19, pp.2641-2650, 2008.
DOI : 10.1073/pnas.0600605103

URL : https://hal.archives-ouvertes.fr/hal-00518125

J. Reiskind, T. Madsen, L. Vanginkel, and G. Bowes, Evidence that inducible C 4 -type photosynthesis is a chloroplastic CO 2 -concentrating, 1997.

K. Richardson, H. Griffiths, M. Reed, J. Raven, and N. Griffiths, Inorganic carbon assimilation in the Isoetids, Isoetes lacustris L. and Lobelia dortmanna L., Oecologia, vol.17, issue.5, pp.115-121, 1984.
DOI : 10.1007/BF00379096

W. Robe and H. Griffiths, Photosynthesis of Littorella uniflora grown under two PAR regimes: C3 and CAM gas exchange and the regulation of internal CO2 and O2 concentrations, Oecologia, vol.20, issue.3?4, pp.128-136, 1990.
DOI : 10.1007/BF00317353

R. Sage, Are crassulacean acid metabolism and C4 photosynthesis incompatible?, Functional Plant Biology, vol.29, issue.6, pp.775-785, 2002.
DOI : 10.1071/PP01217

R. Sage, T. Sage, and F. Kocacinar, Photosynthesis, Annual Review of Plant Biology, vol.63, issue.1, pp.19-47, 2012.
DOI : 10.1146/annurev-arplant-042811-105511

K. Silvera, K. Neubig, W. Whitten, N. Williams, K. Winter et al., Evolution along the crassulacean acid metabolism continuum, Functional Plant Biology, vol.37, issue.11, pp.995-1010, 2010.
DOI : 10.1071/FP10084

URL : http://www.publish.csiro.au/fp/pdf/FP10084

A. Smith and S. Zeeman, Quantification of starch in plant tissues, Nature Protocols, vol.893, issue.3, pp.1342-1345, 2006.
DOI : 10.1016/0304-4165(78)90223-4

T. Taybi, J. Cushman, and A. Borland, Environmental, hormonal and circadian regulation of crassulacean acid metabolism expression, Functional Plant Biology, vol.29, issue.6, pp.669-678, 2002.
DOI : 10.1071/PP01244

M. Vadstrup and T. Madsen, Growth limitation of submerged aquatic macrophytes by inorganic carbon, Freshwater Biology, vol.58, issue.3, pp.411-419, 1995.
DOI : 10.1104/pp.58.6.761

T. Van, W. Haller, and G. Bowes, Comparison of the Photosynthetic Characteristics of Three Submersed Aquatic Plants, PLANT PHYSIOLOGY, vol.58, issue.6, pp.761-768, 1976.
DOI : 10.1104/pp.58.6.761

E. Voznesenskaya, V. Franceschi, O. Kiirats, H. Freitag, and G. Edwards, Kranz anatomy is not essential for terrestrial C4 plant photosynthesis, Nature, vol.198, issue.6863, pp.543-546, 2001.
DOI : 10.1007/BF00262643

D. Webb, M. Rattray, and J. Brown, A preliminary survey for crassulacean acid metabolism (CAM) in submerged aquatic macrophytes in New Zealand, New Zealand Journal of Marine and Freshwater Research, vol.76, issue.2, pp.231-235, 1988.
DOI : 10.1104/pp.76.1.68

T. Yang and X. Liu, Comparing photosynthetic characteristics of Isoetes sinensis Palmer under submerged and terrestrial conditions, Scientific Reports, vol.25, issue.1, 2015.
DOI : 10.1006/meth.2001.1262

L. Yin, W. Li, T. Madsen, S. Maberly, and G. Bowes, Photosynthetic inorganic carbon acquisition in 30 freshwater macrophytes, Aquatic Botany, vol.140, 2017.
DOI : 10.1016/j.aquabot.2016.05.002

Y. Zhang, L. Yin, H. Jiang, W. Li, B. Gontero et al., Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae), Photosynthesis Research, vol.7, issue.2-3, pp.285-297, 2014.
DOI : 10.1371/journal.pone.0037438

URL : https://hal.archives-ouvertes.fr/hal-01494530