D. Taylor and S. Taylor, Environmental Uranium and Human Health, Reviews on Environmental Health, vol.48, issue.3, pp.147-157, 1997.
DOI : 10.1097/00004032-198505000-00005

D. Brugge, J. De-lemos, and B. Oldmixon, Exposure Pathways and Health Effects Associated with Chemical and Radiological Toxicity of Natural Uranium: A Review, Reviews on Environmental Health, vol.105, issue.3, pp.177-193, 2005.
DOI : 10.1093/toxsci/41.1.138

K. Maher, J. Bargar, G. Brown, and . Jr, Environmental Speciation of Actinides, Inorganic Chemistry, vol.52, issue.7, pp.3510-3532, 2013.
DOI : 10.1021/ic301686d

W. Li, D. Victor, and C. Chakrabarlti, Effect of pH and uranium concentration on interaction of uranium(VI) and uranium(IV) with organic ligands in aqueous solutions, Analytical Chemistry, vol.52, issue.3, pp.520-523, 1980.
DOI : 10.1021/ac50053a033

E. Cardenas, W. Wu, M. Leigh, C. J. Carroll, and S. , Microbial Communities in Contaminated Sediments, Associated with Bioremediation of Uranium to Submicromolar Levels, Applied and Environmental Microbiology, vol.74, issue.12, pp.3718-3729, 2008.
DOI : 10.1128/AEM.02308-07

D. Akob, H. Mills, and J. Kostka, Metabolically active microbial communities in uranium-contaminated subsurface sediments, FEMS Microbiology Ecology, vol.59, issue.1, pp.95-107, 2007.
DOI : 10.1111/j.1574-6941.2006.00203.x

M. Merroun and S. Selenska-pobell, Bacterial interactions with uranium: An environmental perspective, Journal of Contaminant Hydrology, vol.102, issue.3-4, pp.285-295, 2008.
DOI : 10.1016/j.jconhyd.2008.09.019

L. Mondani, K. Benzerara, M. Carriere, R. Christen, and Y. Mamindy-pajany, Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls, PLoS ONE, vol.71, issue.210, p.25771, 2011.
DOI : 10.1371/journal.pone.0025771.s005

URL : https://hal.archives-ouvertes.fr/hal-00677389

J. Finlay, V. Allan, A. Conner, M. Callow, and G. Basnakova, Phosphate release and heavy metal accumulation by biofilm-immobilized and chemically-coupled cells of acitrobacter sp. pre-grown in continuous culture, Biotechnology and Bioengineering, vol.55, issue.1, pp.87-97, 1999.
DOI : 10.1002/(SICI)1097-0290(19990405)63:1<87::AID-BIT9>3.0.CO;2-0

S. Choudhary and P. Sar, Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration, Bioresource Technology, vol.100, issue.9, pp.2482-2492, 2009.
DOI : 10.1016/j.biortech.2008.12.015

S. Kazy, D. Souza, S. Sar, and P. , Uranium and thorium sequestration by a Pseudomonas sp.: Mechanism and chemical characterization, Journal of Hazardous Materials, vol.163, issue.1, pp.65-72, 2009.
DOI : 10.1016/j.jhazmat.2008.06.076

S. Kelly, M. Boyanov, B. Bunker, J. Fein, and D. Fowle, XAFS determination of the bacterial cell wall functional groups responsible for complexation of Cd and U as a function of pH, Journal of Synchrotron Radiation, vol.8, issue.2, pp.946-948, 2001.
DOI : 10.1107/S0909049500021014

M. Merroun, J. Raff, A. Rossberg, C. Hennig, and T. Reich, Complexation of Uranium by Cells and S-Layer Sheets of Bacillus sphaericus JG-A12, Applied and Environmental Microbiology, vol.71, issue.9, pp.5532-5543, 2005.
DOI : 10.1128/AEM.71.9.5532-5543.2005

N. Renninger, R. Knopp, H. Nitsche, D. Clark, and J. Keasling, Uranyl Precipitation by Pseudomonas aeruginosa via Controlled Polyphosphate Metabolism, Applied and Environmental Microbiology, vol.70, issue.12, pp.7404-7412, 2004.
DOI : 10.1128/AEM.70.12.7404-7412.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC535141

P. Hu, E. Brodie, Y. Suzuki, H. Mcadams, and G. Andersen, Whole-Genome Transcriptional Analysis of Heavy Metal Stresses in Caulobacter crescentus, Journal of Bacteriology, vol.187, issue.24, pp.8437-8449, 2005.
DOI : 10.1128/JB.187.24.8437-8449.2005

L. Macaskie, K. Bonthrone, P. Yong, and D. Goddard, Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation, Microbiology, vol.146, issue.8, pp.1855-1867, 2000.
DOI : 10.1099/00221287-146-8-1855

M. Beazley, R. Martinez, P. Sobecky, S. Webb, and M. Taillefert, Uranium Biomineralization as a Result of Bacterial Phosphatase Activity:?? Insights from Bacterial Isolates from a Contaminated Subsurface, Environmental Science & Technology, vol.41, issue.16, pp.5701-5707, 2007.
DOI : 10.1021/es070567g

Y. Suzuki and J. Banfield, Resistance to, and Accumulation of, Uranium by Bacteria from a Uranium-Contaminated Site, Geomicrobiology Journal, vol.29, issue.2, pp.113-121, 2004.
DOI : 10.1271/bbb1961.37.2269

G. Strandberg, S. Shumate, and J. Parrott, Microbial Cells as Biosorbents for Heavy Metals: Accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa, Appl Environ Microbiol, vol.41, pp.237-245, 1981.

D. Holmes, O. Neil, R. Chavan, M. , N. Guessan et al., Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments, The ISME Journal, vol.51, issue.2, pp.216-230, 2009.
DOI : 10.1016/S0022-2836(05)80360-2

R. Bencheikh-latmani, S. Williams, L. Haucke, C. Criddle, and L. Wu, Global Transcriptional Profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) Reduction, Applied and Environmental Microbiology, vol.71, issue.11, pp.7453-7460, 2005.
DOI : 10.1128/AEM.71.11.7453-7460.2005

N. Hillson, P. Hu, G. Andersen, and L. Shapiro, Caulobacter crescentus as a Whole-Cell Uranium Biosensor, Applied and Environmental Microbiology, vol.73, issue.23, pp.7615-7621, 2007.
DOI : 10.1128/AEM.01566-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168040

M. Wilkins, N. Verberkmoes, K. Williams, S. Callister, and P. Mouser, Proteogenomic Monitoring of Geobacter Physiology during Stimulated Uranium Bioremediation, Applied and Environmental Microbiology, vol.75, issue.20, pp.6591-6599, 2009.
DOI : 10.1128/AEM.01064-09

C. Lok, C. Ho, R. Chen, P. Tam, and J. Chiu, Silver Resistance of Chromosomal Origin, Journal of Proteome Research, vol.7, issue.6, pp.2351-2356, 2008.
DOI : 10.1021/pr700646b

O. Barre, F. Mourlane, and M. Solioz, Copper Induction of Lactate Oxidase of Lactococcus lactis: a Novel Metal Stress Response, Journal of Bacteriology, vol.189, issue.16, pp.5947-5954, 2007.
DOI : 10.1128/JB.00576-07

S. Sharma, C. Sundaram, P. Luthra, Y. Singh, and R. Sirdeshmukh, Role of proteins in resistance mechanism of Pseudomonas fluorescens against heavy metal induced stress with proteomics approach, Journal of Biotechnology, vol.126, issue.3, pp.374-382, 2006.
DOI : 10.1016/j.jbiotec.2006.04.032

C. Bar, R. Patil, J. Doshi, M. Kulkarni, and W. Gade, Characterization of the proteins of bacterial strain isolated from contaminated site involved in heavy metal resistance???A proteomic approach, Journal of Biotechnology, vol.128, issue.3, pp.444-451, 2007.
DOI : 10.1016/j.jbiotec.2006.11.010

N. Kilic, A. Stensballe, D. Otzen, and G. Donmez, Proteomic changes in response to chromium(VI) toxicity in Pseudomonas aeruginosa, Bioresource Technology, vol.101, issue.7, pp.2134-2140, 2010.
DOI : 10.1016/j.biortech.2009.11.008

J. Mrvcic, A. Butorac, E. Solic, D. Stanzer, and V. Bacun-druzina, Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions, World Journal of Microbiology and Biotechnology, vol.115, issue.1, pp.75-85, 2012.
DOI : 10.1016/j.foodchem.2008.12.006

V. Malard, J. Gaillard, F. Berenguer, N. Sage, and E. Quemeneur, Urine proteomic profiling of uranium nephrotoxicity, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1794, issue.6, pp.882-891, 2009.
DOI : 10.1016/j.bbapap.2009.01.010

V. Malard, O. Prat, E. Darrouzet, F. Berenguer, and N. Sage, Proteomic analysis of the response of human lung cells to uranium, PROTEOMICS, vol.51, issue.17, pp.4568-4580, 2005.
DOI : 10.1038/bjc.1991.75

O. Prat, F. Berenguer, V. Malard, E. Tavan, and N. Sage, Transcriptomic and proteomic responses of human renal HEK293 cells to uranium toxicity, PROTEOMICS, vol.3, issue.1, pp.297-306, 2005.
DOI : 10.5271/sjweh.2249

R. Thomas and L. Macaskie, The effect of growth conditions on the biodegradation of tributyl phosphate and potential for the remediation of acid mine drainage waters by a naturally-occurring mixed microbial culture, Applied Microbiology and Biotechnology, vol.49, issue.2, pp.202-209, 1998.
DOI : 10.1007/s002530051159

M. Nedelkova, M. Merroun, A. Rossberg, C. Hennig, and S. Selenska-pobell, Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium, FEMS Microbiology Ecology, vol.59, issue.3, pp.694-705, 2007.
DOI : 10.1111/j.1574-6941.2006.00261.x

L. Lutke, H. Moll, and G. Bernhard, Insights into the uranium(vi) speciation with Pseudomonas fluorescens on a molecular level, Dalton Transactions, vol.91, issue.59, pp.13370-13378, 2012.
DOI : 10.1524/ract.91.1.11.19008

A. Koban, G. Geipel, A. Roßberg, and G. Bernhard, Summary, Radiochimica Acta, vol.9, issue.12, pp.903-908, 2004.
DOI : 10.1016/S0277-5387(98)00257-5

P. Allen, D. Shuh, J. Bucher, N. Edelstein, and T. Reich, EXAFS Determinations of Uranium Structures:?? The Uranyl Ion Complexed with Tartaric, Citric, and Malic Acids, Inorganic Chemistry, vol.35, issue.3, pp.784-787, 1996.
DOI : 10.1021/ic9508536

E. Hudson, P. Allen, L. Terminello, M. Denecke, and T. Reich, Polarized x-ray-absorption spectroscopy of the uranyl ion: Comparison of experiment and theory, Physical Review B, vol.208, issue.209, pp.156-165, 1996.
DOI : 10.1007/978-3-662-02853-7

J. Foster, Escherichia coli acid resistance: tales of an amateur acidophile, Nature Reviews Microbiology, vol.48, issue.11, pp.898-907, 2004.
DOI : 10.1146/annurev.mi.39.100185.001251

J. Foster and H. Hall, Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium., Journal of Bacteriology, vol.173, issue.16, pp.5129-5135, 1991.
DOI : 10.1128/jb.173.16.5129-5135.1991

J. Lin, I. Lee, J. Frey, J. Slonczewski, and J. Foster, Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli., Journal of Bacteriology, vol.177, issue.14, pp.4097-4104, 1995.
DOI : 10.1128/jb.177.14.4097-4104.1995

L. Teixeira, A. Costa, S. Ferreira, M. Freitas, and M. Souza-de-carvalho, Spectrophotometric determination of uranium using 2-(2- Thiazolylazo)-p-Cresol (TAC) in the presence of surfactants, Journal of the Brazilian Chemical Society, vol.10, issue.6, pp.519-522, 1999.
DOI : 10.1590/S0103-50531999000600016

R. Grandori, P. Khalifah, J. Boice, R. Fairman, and K. Giovanielli, Biochemical Characterization of WrbA, Founding Member of a New Family of Multimeric Flavodoxin-like Proteins, Journal of Biological Chemistry, vol.264, issue.33, pp.20960-20966, 1998.
DOI : 10.1016/0014-5793(95)01081-O

M. Rahman, M. Hasan, T. Oba, and K. Shimizu, Effect ofrpoS gene knockout on the metabolism ofEscherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations, Biotechnology and Bioengineering, vol.7, issue.3, pp.585-595, 2006.
DOI : 10.1007/s00253-002-1202-6

A. Collet, C. P. Beloin, C. Ghigo, J. Rihouey, and C. , Grown Planktonically and as Biofilm, Journal of Proteome Research, vol.7, issue.11, pp.4659-4669, 2008.
DOI : 10.1021/pr8001723

E. Patridge and J. Ferry, WrbA from Escherichia coli and Archaeoglobus fulgidus Is an NAD(P)H:Quinone Oxidoreductase, Journal of Bacteriology, vol.188, issue.10, pp.3498-3506, 2006.
DOI : 10.1128/JB.188.10.3498-3506.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482846

M. Revington, A. Semesi, A. Yee, and G. Shaw, protein ydhR: A putative mono-oxygenase, Protein Science, vol.97, issue.12, pp.3115-3120, 2005.
DOI : 10.1110/ps.051809305

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2253234

D. Ackerley, C. Gonzalez, C. Park, R. Blake, and M. Keyhan, Chromate-Reducing Properties of Soluble Flavoproteins from Pseudomonas putida and Escherichia coli, Applied and Environmental Microbiology, vol.70, issue.2, pp.873-882, 2004.
DOI : 10.1128/AEM.70.2.873-882.2004

Y. Barak, D. Ackerley, C. Dodge, L. Banwari, and C. Alex, Analysis of Novel Soluble Chromate and Uranyl Reductases and Generation of an Improved Enzyme by Directed Evolution, Applied and Environmental Microbiology, vol.72, issue.11, pp.7074-7082, 2006.
DOI : 10.1128/AEM.01334-06

M. Fraaije and A. Mattevi, Flavoenzymes: diverse catalysts with recurrent features, Trends in Biochemical Sciences, vol.25, issue.3, pp.126-132, 2000.
DOI : 10.1016/S0968-0004(99)01533-9

S. Kushner, mRNA Decay in Escherichia coli Comes of Age, Journal of Bacteriology, vol.184, issue.17, pp.4658-4665, 2002.
DOI : 10.1128/JB.184.17.4658-4665.2002

D. Lay, N. Gottesman, and S. , Role of polynucleotide phosphorylase in sRNA function in Escherichia coli, RNA, vol.17, issue.6, pp.1172-1189, 2011.
DOI : 10.1261/rna.2531211

J. Thomas and F. Baneyx, ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells, Molecular Microbiology, vol.274, issue.6, pp.1360-70, 2000.
DOI : 10.1128/jb.174.5.1454-1461.1992

S. Swaramoorthy, S. Poulain, R. Hienerwadel, N. Bremond, and M. Sylvester, Crystal Structure of ChrR???A Quinone Reductase with the Capacity to Reduce Chromate, PLoS ONE, vol.39, issue.Pt 2, p.36017, 2012.
DOI : 10.1371/journal.pone.0036017.s005

O. Proux, X. Biquard, E. Lahera, J. Menthonnex, and A. Prat, A new beamline for X-ray absorption investigation of very diluted systems of environmental, material and biological interests, Phys Scr, vol.115, pp.970-973, 2005.

J. Storey and R. Tibshirani, Statistical significance for genomewide studies, Proceedings of the National Academy of Sciences, vol.23, issue.1, pp.9440-9445, 2003.
DOI : 10.1002/gepi.1124