T. J. Cohen, V. M. Lee, and J. Trojanowski, TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies, Trends in Molecular Medicine, vol.17, issue.11, pp.659-667, 2011.
DOI : 10.1016/j.molmed.2011.06.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202652

A. Ratti and E. Buratti, Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins, Journal of Neurochemistry, vol.9, issue.Pt B, pp.95-11113625, 2016.
DOI : 10.1371/journal.pgen.1003895

E. Buratti, Functional Significance of TDP-43 Mutations in Disease, Adv Genet, vol.91, pp.1-53, 2015.
DOI : 10.1016/bs.adgen.2015.07.001

G. S. Pesiridis, V. M. Lee, and J. Trojanowski, Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis, Human Molecular Genetics, vol.18, issue.R2, pp.156-16210, 2009.
DOI : 10.1093/hmg/ddp303

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758707

J. Sreedharan, TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis, Science, vol.419, issue.1, pp.1668-167210, 2008.
DOI : 10.1016/j.neulet.2007.03.044

A. M. Blokhuis, E. J. Groen, M. Koppers, L. H. Van-den-berg, and R. J. Pasterkamp, Protein aggregation in amyotrophic lateral sclerosis, Acta Neuropathologica, vol.110, issue.Pt 15, pp.777-79410, 2013.
DOI : 10.1016/j.cub.2007.07.041

M. Baralle, E. Buratti, and F. Baralle, The role of TDP-43 in the pathogenesis of ALS and FTLD: Figure 1, Biochemical Society Transactions, vol.41, issue.6, pp.1536-154010, 2013.
DOI : 10.1042/BST20130186

C. M. Dewey, TDP-43 aggregation in neurodegeneration: Are stress granules the key?, Brain Research, vol.1462, pp.16-25032, 2012.
DOI : 10.1016/j.brainres.2012.02.032

K. E. Mcaleese, TDP-43 pathology in Alzheimer's disease, dementia with Lewy bodies and ageing, Brain Pathology, vol.70, issue.4, pp.10-1111, 2016.
DOI : 10.1001/jamaneurol.2013.3961

X. L. Chang, M. S. Tan, L. Tan, and J. Yu, The Role of TDP-43 in Alzheimer???s Disease, Molecular Neurobiology, vol.9, issue.2, pp.10-1007, 2015.
DOI : 10.4161/auto.22526

Y. S. Fang, Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients, Nature Communications, vol.69, issue.4824, pp.10-1038, 2014.
DOI : 10.1074/jbc.M102223200

P. Smethurst, K. C. Sidle, and J. Hardy, Review: Prion-like mechanisms of transactive response DNA binding protein of 43???kDa (TDP-43) in amyotrophic lateral sclerosis (ALS), Neuropathology and Applied Neurobiology, vol.7, issue.May 2011, pp.578-59710, 2015.
DOI : 10.1016/j.celrep.2014.05.033

M. Mompeán, M. Baralle, E. Buratti, and D. V. Laurents, An Amyloid-Like Pathological Conformation of TDP-43 Is Stabilized by Hypercooperative Hydrogen Bonds, Frontiers in Molecular Neuroscience, vol.23, p.125, 2016.
DOI : 10.1093/hmg/ddu409

M. Mompean, Structural Evidence of Amyloid Fibril Formation in the Putative Aggregation Domain of TDP-43, The Journal of Physical Chemistry Letters, vol.6, issue.13, pp.2608-2615, 2015.
DOI : 10.1021/acs.jpclett.5b00918

M. Budini, V. Romano, Z. Quadri, E. Buratti, and F. Baralle, TDP-43 loss of cellular function through aggregation requires additional structural determinants beyond its C-terminal Q/N prion-like domain, Human Molecular Genetics, vol.24, issue.1, pp.9-2010, 2015.
DOI : 10.1093/hmg/ddu415

M. Mompean, ???Structural characterization of the minimal segment of TDP-43 competent for aggregation???, Archives of Biochemistry and Biophysics, vol.545, pp.53-62007, 2014.
DOI : 10.1016/j.abb.2014.01.007

F. Kametani, Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains, Scientific Reports, vol.288, issue.1, p.23281, 2016.
DOI : 10.1074/jbc.M112.438564

L. L. Jiang, Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation, Scientific Reports, vol.20, issue.1, pp.10-1038, 2016.
DOI : 10.1093/emboj/20.7.1774

B. S. Johnson, TDP-43 Is Intrinsically Aggregation-prone, and Amyotrophic Lateral Sclerosis-linked Mutations Accelerate Aggregation and Increase Toxicity, Journal of Biological Chemistry, vol.418, issue.30, pp.20329-2033910, 2009.
DOI : 10.1038/ng.337

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2740458

A. Caragounis, Zinc induces depletion and aggregation of endogenous TDP-43, Free Radical Biology and Medicine, vol.48, issue.9, pp.1152-1161035, 2010.
DOI : 10.1016/j.freeradbiomed.2010.01.035

S. Pfaender and A. M. Grabrucker, Characterization of biometal profiles in neurological disorders, Metallomics, vol.8, issue.4, pp.960-97710, 2014.
DOI : 10.2147/CIA.S27983

T. A. Shelkovnikova, Proteinopathies, neurodegenerative disorders with protein aggregation-based pathology, Molecular Biology, vol.46, issue.3, pp.362-37410, 2012.
DOI : 10.1134/S0026893312020161

S. A. Kozin, The English (H6R) familial Alzheimer's disease mutation facilitates zinc-induced dimerization of the amyloid-?? metal-binding domain, Metallomics, vol.6, issue.3, pp.422-42510, 2015.
DOI : 10.1039/C3MT00257H

P. O. Tsvetkov, Isomerization of the Asp7 Residue Results in Zinc???Induced Oligomerization of Alzheimer???s Disease Amyloid ??(1???16) Peptide, ChemBioChem, vol.75, issue.10, pp.1564-1567, 2008.
DOI : 10.1002/cbic.200700784

P. O. Tsvetkov, Minimal Zn2+ Binding Site of Amyloid-??, Biophysical Journal, vol.99, issue.10, pp.84-86015, 2010.
DOI : 10.1016/j.bpj.2010.09.015

URL : http://doi.org/10.1016/j.bpj.2010.09.015

S. A. Kozin, Zinc-induced dimerization of the amyloid-?? metal-binding domain 1???16 is mediated by residues 11???14, Molecular BioSystems, vol.89, issue.4, pp.1053-105510, 2011.
DOI : 10.1073/pnas.89.13.6075

P. O. Tsvetkov, Peripherally applied synthetic tetrapeptides HAEE and RADD slow down the development of cerebral betaamyloidosis in AbetaPP/PS1 transgenic mice, J Alzheimers Dis, vol.49, issue.265, pp.10-3233, 2015.

B. C. Mackness, M. T. Tran, S. P. Mcclain, C. R. Matthews, and J. A. Zitzewitz, Folding of the RNA Recognition Motif (RRM) Domains of the Amyotrophic Lateral Sclerosis (ALS)-linked Protein TDP-43 Reveals an Intermediate State, Journal of Biological Chemistry, vol.1832, issue.12, pp.8264-827610, 2014.
DOI : 10.1093/hmg/ddt296

S. K. Chowdhury, V. Katta, R. C. Beavis, and B. Chait, Origin and removal of adducts (molecular mass = 98 u) attached to peptide and protein ions in electrospray ionization mass spectra, Journal of the American Society for Mass Spectrometry, vol.3, issue.5, pp.382-388, 1990.
DOI : 10.1002/rcm.1290031207

C. H. Chiang, Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation, Scientific Reports, vol.175, issue.1, pp.10-21581, 1038.
DOI : 10.1016/j.jsb.2011.04.006

D. Lafitte, Cation binding mode of fully oxidised calmodulin explained by the unfolding of the apostate, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1600, issue.1-2, pp.105-110, 2002.
DOI : 10.1016/S1570-9639(02)00450-8

S. Baladi, Folding units in calcium vector protein of amphioxus: Structural and functional properties of its amino- and carboxy-terminal halves, Protein Science, vol.10, issue.4, pp.771-778, 2001.
DOI : 10.1110/ps.40601

L. J. Del-valle, E. Ramon, X. Canavate, P. Dias, and P. Garriga, Zinc-induced Decrease of the Thermal Stability and Regeneration of Rhodopsin, Journal of Biological Chemistry, vol.32, issue.7, pp.4719-472410, 2003.
DOI : 10.1021/bi960858u

S. E. Permyakov, Recoverin Is a Zinc-Binding Protein, Journal of Proteome Research, vol.2, issue.1, pp.51-57, 2003.
DOI : 10.1021/pr025553i

J. F. Brandts and L. N. Lin, Study of strong to ultratight protein interactions using differential scanning calorimetry, Biochemistry, vol.29, issue.29, pp.6927-6940, 1990.
DOI : 10.1021/bi00481a024

P. J. Lukavsky, Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43, Nature Structural & Molecular Biology, vol.992, issue.12, pp.1443-1449, 2013.
DOI : 10.1016/j.febslet.2006.01.052

P. O. Tsvetkov, A. A. Makarov, S. Malesinski, V. Peyrot, and F. Devred, New insights into tau???microtubules interaction revealed by isothermal titration calorimetry, Biochimie, vol.94, issue.3, pp.916-919, 2012.
DOI : 10.1016/j.biochi.2011.09.011

C. Lagier-tourenne, M. Polymenidou, and D. W. Cleveland, TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration, Human Molecular Genetics, vol.19, issue.R1, pp.46-6410, 2010.
DOI : 10.1093/hmg/ddq137

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167692

W. Maret, ) ion concentrations in cell biology with fluorescent chelating molecules, Metallomics, vol.47, issue.9, pp.202-21110, 2015.
DOI : 10.1039/c1cc11213a

D. J. Eide, Zinc transporters and the cellular trafficking of zinc, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1763, issue.7, pp.711-722005, 2006.
DOI : 10.1016/j.bbamcr.2006.03.005

T. Kambe, T. Tsuji, A. Hashimoto, and N. Itsumura, The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism, Physiological Reviews, vol.95, issue.3, pp.749-784, 2015.
DOI : 10.1152/physrev.00035.2014

C. J. Frederickson, S. W. Suh, D. Silva, C. J. Frederickson, and R. B. Thompson, Importance of zinc in the central nervous system: the zinc-containing neuron, J Nutr, vol.130, pp.1471-1483, 2000.

P. Tsvetkov, F. Devred, and A. Makarov, Thermodynamics of zinc binding to human S100A2, Molecular Biology, vol.44, issue.5, pp.832-835, 2010.
DOI : 10.1134/S0026893310050213

N. J. Pace and E. Weerapana, Zinc-Binding Cysteines: Diverse Functions and Structural Motifs, Biomolecules, vol.280, issue.2, pp.419-43410, 2014.
DOI : 10.1002/cbic.201300396

URL : http://doi.org/10.3390/biom4020419

G. H. Kim, J. E. Kim, S. J. Rhie, and S. Yoon, The Role of Oxidative Stress in Neurodegenerative Diseases, Experimental Neurobiology, vol.24, issue.4, pp.325-340, 2015.
DOI : 10.5607/en.2015.24.4.325

W. Maret, Zinc coordination environments in proteins determine zinc functions, Journal of Trace Elements in Medicine and Biology, vol.19, issue.1, pp.7-12003, 2005.
DOI : 10.1016/j.jtemb.2005.02.003

Y. T. Wang, The Truncated C-terminal RNA Recognition Motif of TDP-43 Protein Plays a Key Role in Forming Proteinaceous Aggregates, Journal of Biological Chemistry, vol.31, issue.13, pp.9049-905710, 2013.
DOI : 10.1074/jbc.M111.231118

M. Neumann, L. K. Kwong, D. M. Sampathu, J. Q. Trojanowski, and V. M. Lee, TDP-43 Proteinopathy in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis, Archives of Neurology, vol.64, issue.10, pp.1388-1394, 2007.
DOI : 10.1001/archneur.64.10.1388

J. L. Robinson, TDP-43 skeins show properties of amyloid in a subset of ALS cases, Acta Neuropathologica, vol.1, issue.3, pp.121-13110, 2013.
DOI : 10.1001/archneurol.2009.328

E. H. Bigio, Inclusions in frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP) and amyotrophic lateral sclerosis (ALS), but not FTLD with FUS proteinopathy (FTLD-FUS), have properties of amyloid, Acta Neuropathologica, vol.7, issue.3, pp.463-46510, 2013.
DOI : 10.1186/1750-1326-7-56

I. Y. Petrushanko, Oxidation of ?? 2+-Binding Domain of NADPH Oxidase 5 (NOX5): Toward Understanding the Mechanism of Inactivation of NOX5 by ROS, PLoS One, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01478543

F. H. Niesen, H. Berglund, and M. Vedadi, The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability, Nature Protocols, vol.4, issue.9, pp.2212-2221321, 2007.
DOI : 10.1038/nprot.2006.202

V. Gapsys, S. Michielssens, D. Seeliger, B. L. De-groot, and . Pmx, pmx: Automated protein structure and topology generation for alchemical perturbations, Journal of Computational Chemistry, vol.139, issue.5, pp.348-35410, 2015.
DOI : 10.1063/1.4826261

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365728

P. Tsvetkov, Protein Sequence Analysis Tool http://www.prot-seq.org, 2016.

O. Conchillo-solé, AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides, BMC Bioinformatics, vol.8, issue.1, pp.10-1186, 2007.
DOI : 10.1186/1471-2105-8-65

I. Walsh, F. Seno, S. C. Tosatto, and A. Trovato, PASTA 2.0: an improved server for protein aggregation prediction, Nucleic Acids Research, vol.42, issue.W1, pp.301-307, 2014.
DOI : 10.1093/nar/gku399

F. Rousseau, J. Schymkowitz, and L. Serrano, Protein aggregation and amyloidosis: confusion of the kinds?, Current Opinion in Structural Biology, vol.16, issue.1, pp.118-126011, 2006.
DOI : 10.1016/j.sbi.2006.01.011

A. M. Fernandez-escamilla, F. Rousseau, J. Schymkowitz, and L. Serrano, Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins, Nature Biotechnology, vol.74, issue.10, pp.1302-130610, 2004.
DOI : 10.1016/0005-2795(75)90109-9

R. Linding, J. Schymkowitz, F. Rousseau, F. Diella, and L. Serrano, A Comparative Study of the Relationship Between Protein Structure and ??-Aggregation in Globular and Intrinsically Disordered Proteins, Journal of Molecular Biology, vol.342, issue.1, pp.345-353088, 2004.
DOI : 10.1016/j.jmb.2004.06.088

S. Zibaee, O. S. Makin, M. Goedert, and L. C. Serpell, A simple algorithm locates ??-strands in the amyloid fibril core of ??-synuclein, A??, and tau using the amino acid sequence alone, Protein Science, vol.311, issue.5, pp.906-91810062624507, 1110.
DOI : 10.1016/0167-4838(87)90109-9