Z. Jin, S. Waydo, E. Wildanger, M. Lammers, H. Scholze et al., MVWT-II : The second generation caltech multi-vehicle wireless testbed, Proceedings of the 2004, pp.5321-5326, 2004.

F. Roubieu, J. Serres, F. Colonnier, N. Franceschini, S. Viollet et al., A biomimetic vision-based hovercraft accounts for bees??? complex behaviour in various corridors, Bioinspiration & Biomimetics, vol.9, issue.3, p.36003, 2014.
DOI : 10.1088/1748-3182/9/3/036003

URL : https://hal.archives-ouvertes.fr/hal-01446797

S. Badia, U. Bernardet, and P. Verschure, Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector, PLoS Computational Biology, vol.44, issue.46, p.1000701, 2010.
DOI : 10.1371/journal.pcbi.1000701.s002

S. Fuller and R. Murray, A hovercraft robot that uses insect-inspired visual autocorrelation for motion control in a corridor, 2011 IEEE International Conference on Robotics and Biomimetics, pp.1474-1481, 2011.
DOI : 10.1109/ROBIO.2011.6181498

A. Aguiar, L. Cremean, and J. Hespanha, Position tracking for a nonlinear underactuated hovercraft: controller design and experimental results, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), pp.3858-3863, 2003.
DOI : 10.1109/CDC.2003.1271751

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Roubieu, J. Serres, N. Franceschini, F. Ruffier, and S. Viollet, A fullyautonomous hovercraft inspired by bees : wall following and speed control in straight and tapered corridors, 2012 IEEE International Conference on, pp.1311-1318
URL : https://hal.archives-ouvertes.fr/hal-00743129

J. Zufferey and D. Floreano, Toward 30-gram Autonomous Indoor Aircraft: Vision-based Obstacle Avoidance and Altitude Control, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.2594-2599, 2005.
DOI : 10.1109/ROBOT.2005.1570504

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Zufferey and D. Floreano, Toward 30-gram Autonomous Indoor Aircraft: Vision-based Obstacle Avoidance and Altitude Control, Proceedings of the 2005 IEEE International Conference on Robotics and Automation
DOI : 10.1109/ROBOT.2005.1570504

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Zufferey, A. Klaptocz, A. Beyeler, J. Nicoud, and D. Floreano, A 10-gram vision-based flying robot, Advanced Robotics, vol.21, issue.14, pp.1671-1684, 2007.
DOI : 10.1163/156855307782227417

URL : https://infoscience.epfl.ch/record/109430/files/RSJ-AR07_mc2_holodeck.pdf

A. Beyeler, J. Zufferey, and D. Floreano, Vision-based control of near-obstacle flight, Autonomous Robots, vol.21, issue.14, pp.201-219, 2009.
DOI : 10.1201/9781439808115

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Cherney, Autonomous Micro-Aerial Vehicle Navigation Using a Custom Optic Flow Sensor Ring, Ecole Polytechnique Federale de Lausanne (EPFL), 2013.

A. Briod, J. Zufferey, and D. Floreano, Optic-flow based control of a 46g quadrotor In : Workshop on Vision-based Closed-Loop Control and Navigation of Micro Helicopters in GPS-denied Environments, IROS 2013. EPFL-CONF-189879, 2013.

A. Briod, Robust Autonomous Flight in Unstructured Environments

J. Zufferey, A. Guanella, A. Beyeler, and D. Floreano, Flying over the reality gap: From simulated to real indoor airships, Autonomous Robots, vol.21, issue.3, pp.243-254, 2006.
DOI : 10.1007/s10514-006-9718-8

URL : https://infoscience.epfl.ch/record/88102/files/Zufferey_Guanella_Beyeler_Floreano_AURO_2006.pdf

J. Zufferey, A. Klaptocz, A. Beyeler, J. Nicoud, and D. Floreano, A 10- gram microflyer for vision-based indoor navigation. In : Intelligent Robots and Systems, IEEE, pp.3267-3272, 2006.
DOI : 10.1109/iros.2006.282293

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Moore, K. Dantu, G. Barrows, and R. Nagpal, Autonomous MAV guidance with a lightweight omnidirectional vision sensor, 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.3856-3861, 2014.
DOI : 10.1109/ICRA.2014.6907418

M. M. Ryll and A. Franchi, 6D physical interaction with a fully actuated aerial robot, 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017.
DOI : 10.1109/ICRA.2017.7989608

URL : https://hal.archives-ouvertes.fr/hal-01476814

R. G. Michieletto and A. Franchi, Control of statically hoverable multi-rotor aerial vehicles and application to rotor-failure robustness for hexarotors, 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017.
DOI : 10.1109/ICRA.2017.7989320

URL : https://hal.archives-ouvertes.fr/hal-01476816

R. Hugo, S. Sergio, S. Anand, C. Pedro, and R. L. , Modelling and realtime control stabilization of a new VTOL aircraft with eight rotors, IEEERSJ International Conference on Intelligent Robots and Systems, pp.147-152, 2007.

F. Bohorquez, P. Samuel, J. Sirohi, D. Pines, L. Rudd et al., Design, Analysis and Hover Performance of a Rotary Wing Micro Air Vehicle, Journal of the American Helicopter Society, vol.48, issue.2, pp.80-90, 2003.
DOI : 10.4050/JAHS.48.80

D. Pines and F. Bohorquez, Challenges Facing Future Micro-Air-Vehicle Development, Journal of Aircraft, vol.4698, issue.4, pp.290-305, 2006.
DOI : 10.2514/6.2002-1631

S. Bouabdallah, R. Siegwart, and G. Caprari, Design and Control of an Indoor Coaxial Helicopter, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2930-2935, 2006.
DOI : 10.1109/IROS.2006.282146

URL : http://e-collection.library.ethz.ch/eserv/eth:8097/eth-8097-01.pdf

S. Bouabdallah, Design and control of quadrotors with application to autonomous flying, Ecole Polytechnique Federale de Lausanne (EPFL), 2007.

G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment, AIAA Guidance, Navigation and Control Conference and Exhibit, p.4, 2007.
DOI : 10.1109/TCST.2004.825052

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Guenard, T. Hamel, and R. Mahony, A Practical Visual Servo Control for an Unmanned Aerial Vehicle, IEEE Transactions on Robotics, vol.24, issue.2, pp.331-340, 2008.
DOI : 10.1109/TRO.2008.916666

URL : https://hal.archives-ouvertes.fr/hal-00488385

J. Guerrero-castellanos, N. Marchand, A. Hably, S. Lesecq, and J. Delamare, Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-helicopter, Control Engineering Practice, vol.19, issue.8, pp.790-797, 2011.
DOI : 10.1016/j.conengprac.2011.04.004

URL : https://hal.archives-ouvertes.fr/hal-00568075

B. Herissé, T. Hamel, R. Mahony, and F. Russotto, The landing problem of a VTOL Unmanned Aerial Vehicle on a moving platform using optical flow, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.77-89, 2012.
DOI : 10.1109/IROS.2010.5652633

A. Manecy, N. Marchand, F. Ruffier, and S. Viollet, X4-MaG: A Low-Cost Open-Source Micro-Quadrotor and its Linux-Based Controller, International Journal of Micro Air Vehicles, vol.15, issue.1, pp.89-109, 2015.
DOI : 10.1080/00401706.1973.10489010

URL : https://hal.archives-ouvertes.fr/hal-01099975

S. Rajappa, M. Ryll, H. Bülthoff, and A. Franchi, Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers, 2015 IEEE International Conference on Robotics and Automation (ICRA), pp.4006-4013
DOI : 10.1109/ICRA.2015.7139759

URL : https://hal.archives-ouvertes.fr/hal-01134829

M. Ryll, D. Bicego, and A. Franchi, Modeling and control of FAST-Hex: A fully-actuated by synchronized-tilting hexarotor, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.1689-1694, 2016.
DOI : 10.1109/IROS.2016.7759271

URL : https://hal.archives-ouvertes.fr/hal-01348538

T. Sisirak, T. Tai, and C. Ho, Microbat : A palm-sized electrically powered ornithopter, NASA/JPL Workshop on Biomorphic Robotics, pp.14-27, 2000.

I. Kroo and P. Kunz, Mesoscale flight and miniature rotorcraft development, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications. In : of Progress in Astronautics and Aeronautics. Citeseer, 2001.

J. Yan, R. Wood, S. Avadhanula, M. Sitti, and R. Fearing, Towards flapping wing control for a micromechanical flying insect, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), pp.3901-3908, 2001.
DOI : 10.1109/ROBOT.2001.933225

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Steltz and R. Fearing, Dynamometer power output measurements of piezoelectric actuators, IEEERSJ International Conference on Intelligent Robots and Systems, pp.3980-3986, 2007.
DOI : 10.1109/iros.2007.4399067

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Wood, The First Takeoff of a Biologically Inspired At-Scale Robotic Insect, IEEE Transactions on Robotics, vol.24, issue.2, pp.341-347, 2008.
DOI : 10.1109/TRO.2008.916997

P. Duhamel, N. Pérez-arancibia, G. Barrows, and R. Wood, Altitude feedback control of a flapping-wing microrobot using an on-board biologically inspired optical flow sensor, 2012 IEEE International Conference on Robotics and Automation, pp.4228-4235
DOI : 10.1109/ICRA.2012.6225313

K. Ma, P. Chirarattananon, S. Fuller, and R. Wood, Controlled Flight of a Biologically Inspired, Insect-Scale Robot, Science, vol.41, issue.24, pp.603-607, 2013.
DOI : 10.1109/9.486654

H. Droogendijk, Bio-inspired MEMS flow and inertial sensors. Enschede ; 2014 Available from : http://doc.utwente.nl
DOI : 10.3990/1.9789036535984

URL : http://doc.utwente.nl/89647/1/thesis_H_Droogendijk.pdf

F. Barth, J. Humphrey, and M. Srinivasan, Frontiers in sensing : from biology to engineering, 2012.
DOI : 10.1007/978-3-211-99749-9

R. Hengstenberg, Biological sensors : Controlling the fly's gyroscopes, Nature, vol.392, issue.6678, pp.757-758, 1998.
DOI : 10.1038/33796

R. Northrop, Introduction to dynamic modeling of neuro-sensory systems, 2000.
DOI : 10.1201/9781420041729

W. Pix, J. Zanker, and J. Zeil, The optomotor response and spatial resolution of the visual system in male Xenos vesparum (Strepsiptera), Journal of Experimental Biology, vol.203, issue.22, pp.3397-3409, 2000.

G. Taylor and H. Krapp, Sensory systems and flight stability : what do insects measure and why ? Advances in insect physiology, pp.231-316, 2007.
DOI : 10.1016/s0065-2806(07)34005-8

S. Sane, A. Dieudonné, M. Willis, and T. Daniel, Antennal Mechanosensors Mediate Flight Control in Moths, Science, vol.315, issue.5813, pp.863-866, 2007.
DOI : 10.1126/science.1133598

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Gewecke and H. Heinzel, Aerodynamic and mechanical properties of the antennae as air-current sense organs inLocusta migratoria, Journal of Comparative Physiology ? A, vol.23, issue.4, pp.357-366, 1980.
DOI : 10.1007/BF00610466

S. Simpson and R. Chapman, The insects : structure and function, 2013.

M. Land, Optics and Vision in Invertebrates, Vision in Invertebrates, B : Invertebrate Visual Centers and Behavior I VII/6B, Handbook of Sensory Physiology, 1981.
DOI : 10.1007/978-3-642-66907-1_4

G. Horridge, The Compound Eye of Insects, Scientific American, vol.237, issue.1, pp.108-120, 1977.
DOI : 10.1038/scientificamerican0777-108

M. Land, VISUAL ACUITY IN INSECTS, Annual Review of Entomology, vol.42, issue.1, pp.147-164, 1997.
DOI : 10.1146/annurev.ento.42.1.147

R. Frederiksen and E. Warrant, The optical sensitivity of compound eyes: theory and experiment compared, Biology Letters, vol.14, issue.15, pp.745-747, 2008.
DOI : 10.1016/j.cub.2004.07.057

D. Stavenga, Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics, Journal of Comparative Physiology A, vol.189, issue.1, pp.1-17, 2003.

H. Krapp and R. Hengstenberg, Estimation of self-motion by optic flow processing in single visual interneurons, Nature, vol.384, issue.6608, pp.463-466, 1996.
DOI : 10.1038/384463a0

R. Hengstenberg, Multisensory control in insect oculomotor systems, Rev Oculomot Res, vol.5, pp.285-298, 1993.

H. Schuppe and R. Hengstenberg, Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response, Journal of Comparative Physiology A, vol.173, issue.2, pp.143-149, 1993.
DOI : 10.1007/BF00192973

R. Berry, J. Van-kleef, and G. Stange, The mapping of visual space by dragonfly lateral ocelli, Journal of Comparative Physiology A, vol.16, issue.2, pp.495-513, 2007.
DOI : 10.1113/jphysiol.1966.sp008056

J. Chahl and A. Mizutani, Biomimetic Attitude and Orientation Sensors, IEEE Sensors Journal, vol.12, issue.2, pp.289-297, 2012.
DOI : 10.1109/JSEN.2010.2078806

G. Gremillion, J. Humbert, and H. Krapp, Bio-inspired modeling and implementation of the ocelli visual system of flying insects, Biological Cybernetics, vol.124, issue.4, pp.735-746, 2014.
DOI : 10.1007/BF00661380

J. Gibson, The Perception of the Visual World, The American Journal of Psychology, vol.64, issue.3, 1950.
DOI : 10.2307/1419017

T. Whiteside and G. Samuel, Blur Zone, Nature, vol.7, issue.5227, pp.94-95, 1970.
DOI : 10.1038/225094a0

K. Nakayama and J. Loomis, Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis, Perception, vol.225, issue.1, pp.63-80, 1974.
DOI : 10.1038/225094a0

J. Koenderink and A. Doorn, Facts on optic flow, Biological Cybernetics, vol.203, issue.4, pp.247-254, 1987.
DOI : 10.1007/BF00365219

J. Barron, D. Fleet, and S. Beauchemin, Performance of optical flow techniques, International Journal of Computer Vision, vol.54, issue.1, pp.43-77, 1994.
DOI : 10.1016/1049-9660(91)90063-U

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Harrison and C. Koch, A robust analog VLSI motion sensor based on the visual system of the fly, Autonomous Robots, vol.7, issue.3, pp.211-224, 1999.
DOI : 10.1023/A:1008916202887

J. Pichon, Guidage visuel d'un robot mobile autonome d'insipiration biologique 1ère Partie, Institut National Polytechnique de Grenoble (INP Grenoble, 1991.

N. Franceschini, J. Pichon, and C. B. , From Insect Vision to Robot Vision [and Discussion], Philosophical Transactions of the Royal Society B: Biological Sciences, vol.337, issue.1281, pp.283-294, 1992.
DOI : 10.1098/rstb.1992.0106

C. Blanes, Appareil visuel elementaire pour la navigation a vue d'un robot mobile autonome, Marseille : Master thesis in Neurosciences, 1986.

J. Pichon, C. Blanes, and N. Franceschini, Visual Guidance Of A Mobile Robot Equipped With A Network Of Self-Motion Sensors, Mobile Robots IV, pp.44-53, 1989.
DOI : 10.1117/12.969868

J. Serres and F. Ruffier, Optic Flow-Based Robotics, pp.1-14, 2016.
DOI : 10.1364/OE.23.005614

J. Albus and T. Hong, Motion, depth, and image flow Robotics and Automation, IEEE International Conference on. IEEE, pp.1161-1170, 1990.
DOI : 10.1109/robot.1990.126153

C. Blanes, Guidage visuel d'un robot mobile autonome d'inspiration biologique 2nde Partie, Thèse de doctorat : Institut National Polytechnique de Grenoble, 1991.

F. Ruffier, S. Viollet, S. Amic, and N. Franceschini, Bio-inspired optical flow circuits for the visual guidance of micro air vehicles, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03., pp.846-849, 2003.
DOI : 10.1109/ISCAS.2003.1205152

N. Franceschini, A. Riehle, and A. Nestour, Directionally Selective Motion Detection by Insect Neurons, pp.360-390, 1989.
DOI : 10.1007/978-3-642-74082-4_17

M. Joesch, B. Schnell, S. Raghu, D. Reiff, and A. Borst, ON and OFF pathways in Drosophila motion vision, Nature, vol.258, issue.7321, pp.300-304, 2010.
DOI : 10.1007/BF00218858

F. Roubieu, F. Expert, G. Sabiron, and F. Ruffier, Two-Directional 1-g Visual Motion Sensor Inspired by the Fly's Eye, IEEE Sensors Journal, vol.13, issue.3, pp.1025-1035
DOI : 10.1109/JSEN.2012.2230622

D. Floreano, R. Pericet-camara, S. Viollet, F. Ruffier, A. Brückner et al., Miniature curved artificial compound eyes, Proceedings of the National Academy of Sciences, vol.110, issue.23, pp.9267-9272, 2013.
DOI : 10.1126/science.1182228

URL : https://hal.archives-ouvertes.fr/hal-00835031

J. Duparré, F. Wippermann, P. Dannberg, and A. Bräuer, Artificial compound eye zoom camera, Bioinspiration & Biomimetics, vol.3, issue.4, p.46008, 2008.
DOI : 10.1088/1748-3182/3/4/046008

K. Jeong, J. Kim, and L. Lee, Biologically Inspired Artificial Compound Eyes, Science, vol.312, issue.5773, pp.557-561, 2006.
DOI : 10.1126/science.1123053

Y. Song, Y. Xie, V. Malyarchuk, X. J. Jung, I. Choi et al., Digital cameras with designs inspired by the arthropod eye, Nature, vol.67, issue.7447, pp.95-99, 2013.
DOI : 10.1007/BF00298120

P. Seitz, Optical Superresolution Using Solid-State Cameras And Digita; Signal Processing, Optical Engineering, vol.27, issue.7, pp.277535-277535, 1988.
DOI : 10.1117/12.7976719

F. Expert and F. Ruffier, Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers, Bioinspiration & Biomimetics, vol.10, issue.2, p.26003, 2015.
DOI : 10.1088/1748-3182/10/2/026003

R. Pericet-camara, M. Dobrzynski, R. Juston, S. Viollet, R. Leitel et al., An artificial elementary eye with optic flow detection and compositional properties, Journal of The Royal Society Interface, vol.2, issue.109, p.20150414, 2015.
DOI : 10.1073/pnas.1314311110

URL : https://hal.archives-ouvertes.fr/hal-01414053

S. Viollet, Vibrating makes for better seeing : from the fly's micro-eye movements to hyperacute visual sensors. Frontiers in bioengineering and biotechnology, 2014.

F. Colonnier, A. Manecy, R. Juston, H. Mallot, R. Leitel et al., A small-scale hyperacute compound eye featuring active eye tremor: application to visual stabilization, target tracking, and short-range odometry, Bioinspiration & Biomimetics, vol.10, issue.2, p.26002, 2015.
DOI : 10.1088/1748-3190/10/2/026002

URL : https://hal.archives-ouvertes.fr/hal-01446792

F. Mura and N. Franceschini, Visual control of altitude and speed in a flying agent In : From Animals to Animats, pp.91-99, 1994.

T. Netter and N. Franceschini, Neuromorphic Optical Flow Sensing for Napof-the-Earth flight, Proc. of Conf. on Mobile Robots XIV, pp.208-216, 1999.
DOI : 10.1117/12.369255

T. Netter and N. Franceschini, A robotic aircraft that follows terrain using a neuromorphic eye, IEEE/RSJ International Conference on Intelligent Robots and System, pp.129-134, 2002.
DOI : 10.1109/IRDS.2002.1041376

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Iida, Goal-directed navigation of an autonomous flying robot using biogically inspired cheap vision, Proceedings of the 32nd International Symposium on Robotics (ISR), pp.1404-1409, 2001.
DOI : 10.1117/12.403708

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Barrows, C. Neely, and K. Miller, Optic flow sensors for MAV navigation In : Fixed and flapping wing aerodynamics for Micro Air Vehicle applications, Progress in Astronautics and Aeronautics, pp.557-574, 2001.

T. Neuman and H. Bulthoff, Insect Inspired Visual Control of Translatory Flight, Proc. of the ECAL 2001, pp.627-636, 2001.
DOI : 10.1007/3-540-44811-X_71

W. Wu, L. Schenato, R. Wood, and R. Fearing, Biomimetic Sensor Suite for Flight Control of a Micromechanical Flying Insect : Design and Experimental Results, Proceeding of IEEE Int. Conf. on Robotics and Automation (ICRA), pp.1146-1151, 2003.

J. Chahl, M. Srinivasan, and S. Zhang, Landing Strategies in Honeybees and Applications to Uninhabited Airborne Vehicles, The International Journal of Robotics Research, vol.23, issue.2, pp.101-110, 2004.
DOI : 10.1177/0278364904041320

F. Ruffier and N. Franceschini, Visually guided micro-aerial vehicle: automatic take off, terrain following, landing and wind reaction, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.2339-2346, 2004.
DOI : 10.1109/ROBOT.2004.1307411

W. Green, P. Oh, and G. Barrows, Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.2347-2352, 2004.
DOI : 10.1109/ROBOT.2004.1307412

URL : https://idea.library.drexel.edu/islandora/object/idea%3A794/datastream/OBJ/download/Flying_insect_inspired_vision_for_autonomous_aerial_robot_maneuvers_in_near-earth_environments.pdf

L. Muratet, S. Doncieux, Y. Briere, and J. Meyer, A contribution to vision-based autonomous helicopter flight in urban environments, Robotics and Autonomous Systems, vol.50, issue.4, pp.195-209, 2005.
DOI : 10.1016/j.robot.2004.09.017

URL : https://hal.archives-ouvertes.fr/hal-01185695

J. Zufferey, A. Beyeler, and D. Floreano, Autonomous Flight at Low Altitude Using Light Sensors and Little Computational Power, International Journal of Micro Air Vehicles, vol.23, issue.3, pp.107-117, 2010.
DOI : 10.1109/TRO.2007.898976

URL : http://doi.org/10.1260/1756-8293.2.2.107

M. Garratt and J. Chahl, Vision-based terrain following for an unmanned rotorcraft, Journal of Field Robotics, vol.84, issue.4-5, pp.4-5284, 2008.
DOI : 10.1007/BF00610992

B. Herisse, T. Hamel, R. Mahony, and F. Russotto, A nonlinear terrainfollowing controller for a VTOL unmanned aerial vehicle using translational optical flow, IEEE International Conference on Robotics and Automation, issue.09, 2009.

B. Herisse, T. Hamel, R. Mahony, and F. Russotto, The landing problem of a VTOL Unmanned Aerial Vehicle on a moving platform using optical flow, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, p.77, 2012.
DOI : 10.1109/IROS.2010.5652633

J. Zufferey and D. Floreano, Fly-inspired visual steering of an ultralight indoor aircraft, IEEE Transactions on Robotics, vol.22, issue.1, pp.137-146, 2006.
DOI : 10.1109/TRO.2005.858857

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI), pp.674-679, 1981.

B. Horn and B. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Franceschini, F. Ruffier, J. Serres, and S. Viollet, Optic Flow Based Visual Guidance: From Flying Insects to Miniature Aerial Vehicles, pp.747-770, 2009.
DOI : 10.5772/6491

URL : http://www.intechopen.com/download/pdf/5990

M. Franz and H. Mallot, Biomimetic robot navigation, Robotics and Autonomous Systems, vol.30, issue.1-2, pp.133-153, 2000.
DOI : 10.1016/S0921-8890(99)00069-X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Desouza and A. Kak, Vision for mobile robot navigation: a survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.2, pp.237-267, 2002.
DOI : 10.1109/34.982903

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Kirchner and M. Srinivasan, Freely flying honeybees use image motion to estimate object distance, Naturwissenschaften, vol.9, issue.6, pp.281-282, 1989.
DOI : 10.1007/BF00368643

M. Srinivasan, M. Lehrer, W. Kirchner, and S. Zhang, Abstract, Visual Neuroscience, vol.36, issue.05, pp.519-535, 1991.
DOI : 10.1017/S095252380000033X

M. Srinivasan, Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiological reviews, pp.413-460, 2011.

D. Coombs and K. Roberts, Bee-bot : using peripheral optical flow to avoid obstacles Intelligent robots and computer vision XI, In : In SPIE, vol.1825, pp.714-721, 1992.
DOI : 10.1117/12.131575

A. Duchon and W. Warren, Robot navigation from a Gibsonian viewpoint, Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp.2272-2277, 1994.
DOI : 10.1109/ICSMC.1994.400203

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Santos-victor, G. Sandini, F. Curotto, and S. Garibaldi, Divergent stereo in autonomous navigation : learning from bees, proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.434-439, 1993.
DOI : 10.1007/bf01418981

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Santos-victor, G. Sandini, F. Curotto, and S. Garibaldi, Divergent stereo in autonomous navigation: From bees to robots, International Journal of Computer Vision, vol.60, issue.6162, pp.159-177, 1995.
DOI : 10.1007/BF01418981

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Weber, S. Venkatesh, and M. Srinivasan, Insect inspired behaviours for the autonomous control of mobile robots From living eyes to seeing machines, pp.226-248, 1997.

A. Dev, B. Krose, and F. Groen, Navigation of a mobile robot on the temporal development of the optic flow, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97, pp.558-563, 1997.
DOI : 10.1109/IROS.1997.655067

G. Baratoff, C. Toepfer, and H. Neumann, Combined space-variant maps for optical-flow-based navigation, Biological Cybernetics, vol.83, issue.3, pp.199-209, 2000.
DOI : 10.1007/s004220000164

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Carelli, C. Soria, O. Nasisi, and E. Freire, Stable AGV corridor navigation with fused vision-based control signals, IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, pp.2433-2438, 2002.
DOI : 10.1109/IECON.2002.1185354

A. Argyros, D. Tsakiris, and C. Groyer, Biomimetic centering behavior for mobile robots with panoramic sensors. IEEE Robotics and Automation Magazine, Special issue on "Mobile robots with panoramic sensors, K Daniilides and N Papakolopoulos, vol.11, pp.21-30, 2004.

S. Hrabar, G. Sukatme, P. Corke, K. Usher, and J. Roberts, Combined opticflow and stereo-based navigation of urban canyons for a UAV, proceedings of the IEEE/RSJ International Conference on Intellignent Robots and Systems (IROS), pp.3309-3316, 2005.

S. Kahlouche and K. Achour, Optical flow based robot obstacle avoidance, International Journal of Advanced Robotic Systems, vol.4, issue.1, pp.13-16, 2007.

J. Humbert, H. Hyslop, and M. Chinn, Experimental validation of wide-field integration methods for autonomous navigation, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2144-2149, 2007.
DOI : 10.1109/IROS.2007.4399488

J. Humbert, R. Murray, and M. Dickinson, SENSORIMOTOR CONVERGENCE IN VISUAL NAVIGATION AND FLIGHT CONTROL SYSTEMS, proceedings of the 16th IFAC Wold Congress, 2005.
DOI : 10.3182/20050703-6-CZ-1902.02003

S. Griffiths, J. Saunders, A. Curtis, B. Barber, T. Mclain et al., Maximizing miniature aerial vehicles, IEEE Robotics & Automation Magazine, vol.13, issue.3, pp.34-43, 2006.
DOI : 10.1109/MRA.2006.1678137

S. Hrabar and G. Sukatme, Optimum camera angle for optic flow-based centring response, proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp.3922-3927, 2006.
DOI : 10.1109/iros.2006.281824

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Srinivasan, J. Chahl, K. Weber, S. Venkatesh, M. Nagle et al., Robot navigation inspired by principles of insect vision, Robotics and Autonomous Systems, vol.26, issue.2-3, pp.203-216, 1999.
DOI : 10.1016/S0921-8890(98)00069-4

D. Lee, A Theory of Visual Control of Braking Based on Information about Time-to-Collision, Perception, vol.241, issue.2, pp.437-459, 1976.
DOI : 10.1007/BF01755547

D. Murray, K. Bradshaw, P. Mclauchlan, I. Reid, and P. Sharkey, Driving saccade to pursuit using image motion, International Journal of Computer Vision, vol.11, issue.2, pp.205-228, 1995.
DOI : 10.1007/978-1-4899-5379-7

N. Ancona and T. Poggio, Optical flow from 1D correlation : application to a simple time-to-crash detector. Memo no. 1375, 1993.
DOI : 10.1109/iccv.1993.378218

J. Serres and F. Ruffier, Biomimetic Autopilot Based on Minimalistic Motion Vision for Navigating along Corridors Comprising U-shaped and S-shaped Turns, Journal of Bionic Engineering, vol.12, issue.1, pp.47-60, 2015.
DOI : 10.1016/S1672-6529(14)60099-8

URL : https://hal.archives-ouvertes.fr/hal-01108274

J. Humbert and M. Frye, Extracting behaviorally relevant retinal image motion cues via wide-field integration, 2006 American Control Conference, 2006.
DOI : 10.1109/ACC.2006.1656635

J. Humbert and A. Hyslop, Bioinspired Visuomotor Convergence, IEEE Transactions on Robotics, vol.26, issue.1, pp.121-130, 2010.
DOI : 10.1109/TRO.2009.2033330

J. Conroy, G. Gremillion, B. Ranganathan, and H. J. , Implementation of wide-field integration of optic flow for autonomous quadrotor navigation, Autonomous robots, vol.27, issue.3, p.89198, 2009.

J. Keshavan, G. Gremillion, H. Escobar-alvarez, and H. J. , analysis-based, controller-synthesis framework for robust bioinspired visual navigation in less-structured environments, Bioinspiration & Biomimetics, vol.9, issue.2, p.25011, 2014.
DOI : 10.1088/1748-3182/9/2/025011

J. Keshavan, G. Gremillion, H. Alvarez-escobar, and J. Humbert, Autonomous Vision-Based Navigation of a Quadrotor in Corridor-Like Environments, International Journal of Micro Air Vehicles, vol.14, issue.2, pp.111-123, 2015.
DOI : 10.1016/0167-6911(90)90050-5

M. Srinivasan, S. Zhang, M. Lehrer, and T. Collett, Honeybee navigation en route to the goal : visual flight control and odometry, J Exp Biol, vol.199, pp.237-244, 1996.

M. Srinivasan, S. Zhang, J. Chahl, E. Barth, and S. Venkatesh, How honeybees make grazing landings on flat surfaces, Biological Cybernetics, vol.83, issue.3, pp.171-183, 2000.
DOI : 10.1007/s004220000162

F. Ruffier and N. Franceschini, Optic flow regulation: the key to aircraft automatic guidance, Robotics and Autonomous Systems, vol.50, issue.4, pp.177-194, 2005.
DOI : 10.1016/j.robot.2004.09.016

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Franceschini, F. Ruffier, and J. Serres, A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities, Current Biology, vol.17, issue.4, pp.329-335, 2007.
DOI : 10.1016/j.cub.2006.12.032

URL : http://doi.org/10.1016/j.cub.2006.12.032

D. Izzo and G. Croon, Landing with Time-to-Contact and Ventral Optic Flow Estimates, Journal of Guidance, Control, and Dynamics, vol.5, issue.4, pp.1362-1367, 2012.
DOI : 10.1098/rstb.1980.0089

F. Kendoul, Four-dimensional guidance and control of movement using time-to-contact: Application to automated docking and landing of unmanned rotorcraft systems, The International Journal of Robotics Research, vol.22, issue.1, pp.237-267, 2014.
DOI : 10.1109/TRO.2005.858857

M. Alkowatly, V. Becerra, and W. Holderbaum, Body-centric modelling, identification, and acceleration tracking control of a quadrotor UAV, International Journal of Modelling, Identification and Control, vol.24, issue.1, pp.29-41, 2015.
DOI : 10.1504/IJMIC.2015.071697

G. De-croon, Monocular distance estimation with optical flow maneuvers and efference copies: a stability-based strategy, Bioinspiration & Biomimetics, vol.11, issue.1, p.16004, 2016.
DOI : 10.1088/1748-3190/11/1/016004

E. Baird, N. Boeddeker, M. Ibbotson, and M. Srinivasan, A universal strategy for visually guided landing, Proceedings of the National Academy of Sciences, vol.290, issue.1038, pp.18686-18691, 2013.
DOI : 10.1098/rstb.1980.0089

URL : http://www.pnas.org/content/110/46/18686.full.pdf

P. Serra, R. Cunha, T. Hamel, D. Cabecinhas, and C. Silvestre, Landing on a moving target using image-based visual servo control, 53rd IEEE Conference on Decision and Control, pp.2179-2184
DOI : 10.1109/CDC.2014.7039721

URL : https://hal.archives-ouvertes.fr/hal-01342060

J. Serres, G. M. Ruffier, F. Franceschini, and N. , A bee in the corridor: centering and wall-following, Naturwissenschaften, vol.8, issue.4, pp.1181-1187, 2008.
DOI : 10.1007/978-1-4613-2743-1_16

J. Serres, D. Dray, F. Ruffier, and N. Francechini, A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance, Autonomous Robots, vol.312, issue.4, pp.103-122, 2008.
DOI : 10.1007/978-3-642-74082-4_17

C. Sabo, A. Cope, K. Gurney, E. Vasilaki, and J. Marshall, Bio-Inspired Visual Navigation for a Quadcopter using Optic Flow, AIAA Infotech @ Aerospace, p.404, 2016.
DOI : 10.2307/3213263