P. F. Sullivan, K. S. Kendler, and M. C. Neale, Schizophrenia as a Complex Trait, Archives of General Psychiatry, vol.60, issue.12, pp.1187-1192, 2003.
DOI : 10.1001/archpsyc.60.12.1187

URL : http://archpsyc.jamanetwork.com/data/journals/psych/5198/yoa20885.pdf

I. I. Gottesman and T. D. Gould, The Endophenotype Concept in Psychiatry: Etymology and Strategic Intentions, American Journal of Psychiatry, vol.160, issue.4, pp.636-645, 2003.
DOI : 10.1176/appi.ajp.160.4.636

R. Birnbaum and D. R. Weinberger, Functional neuroimaging and schizophrenia: a view towards effective connectivity modeling and polygenic risk, Dialogues Clin. Neurosci, vol.15, pp.279-289, 2013.

B. Vai, Abnormal cortico-limbic connectivity during emotional processing correlates with symptom severity in schizophrenia, European Psychiatry, vol.30, issue.5, pp.590-597, 2015.
DOI : 10.1016/j.eurpsy.2015.01.002

A. Meyer-lindenberg and D. R. Weinberger, Intermediate phenotypes and genetic mechanisms of psychiatric disorders, Nature Reviews Neuroscience, vol.21, issue.10, pp.818-827, 2006.
DOI : 10.1176/jnp.9.3.471

G. Blasi, Genetic Variation With GSK-3?? Expression, Prefrontal Cortical Thickness, Prefrontal Physiology, and Schizophrenia, American Journal of Psychiatry, vol.170, issue.8, pp.868-876, 2013.
DOI : 10.1176/appi.ajp.2012.12070908

URL : http://doi.org/10.1176/appi.ajp.2012.12070908

D. Dickinson, on General Cognitive Ability, Brain Physiology, and messenger RNA Expression in Schizophrenia Cases and Control Individuals, JAMA Psychiatry, vol.71, issue.6, pp.647-656, 2014.
DOI : 10.1001/jamapsychiatry.2014.157

Y. S. Nikolova, Beyond genotype: serotonin transporter epigenetic modification predicts human brain function, Nature Neuroscience, vol.59, issue.9, pp.1153-1155, 2014.
DOI : 10.1016/S0145-2134(02)00541-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146649

J. Savitz, Inflammation and neurological disease-related genes are differentially expressed in depressed patients with mood disorders and correlate with morphometric and functional imaging abnormalities, Brain, Behavior, and Immunity, vol.31, pp.161-171, 2013.
DOI : 10.1016/j.bbi.2012.10.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577998

S. Vaisvaser, Neuro-Epigenetic Indications of Acute Stress Response in Humans: The Case of MicroRNA-29c, PLOS ONE, vol.141, issue.4, p.146236, 2016.
DOI : 10.1371/journal.pone.0146236.s003

A. Rampino, Expression of DISC1-Interactome Members Correlates with Cognitive Phenotypes Related to Schizophrenia, PLoS ONE, vol.119, issue.4, p.99892, 2014.
DOI : 10.1371/journal.pone.0099892.s001

M. Ayalew, Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction, Molecular Psychiatry, vol.153, issue.9, pp.887-905, 2012.
DOI : 10.1186/1755-8794-2-62

F. Mamdani, Coding and Noncoding Gene Expression Biomarkers in Mood Disorders and Schizophrenia, Disease Markers, vol.265, issue.5181, pp.11-21, 2013.
DOI : 10.1126/science.8091226

URL : http://doi.org/10.1155/2013/748095

N. Kumarasinghe, P. A. Tooney, and U. Schall, Finding the needle in the haystack: A review of microarray gene expression research into schizophrenia, Australian & New Zealand Journal of Psychiatry, vol.21, issue.1, pp.598-610, 2012.
DOI : 10.1155/2005/275318

M. Fromer, Gene expression elucidates functional impact of polygenic risk for schizophrenia, Nature Neuroscience, vol.4, issue.11, pp.1442-1453, 2016.
DOI : 10.1371/journal.pone.0039498

M. Mele, The human transcriptome across tissues and individuals, Science, vol.18, issue.1, pp.660-665, 2015.
DOI : 10.1128/MCB.18.1.566

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547472

J. Auta, DNA-methylation gene network dysregulation in peripheral blood lymphocytes of schizophrenia patients, Schizophrenia Research, vol.150, issue.1, pp.312-318, 2013.
DOI : 10.1016/j.schres.2013.07.030

A. Bergon, CX3CR1 is dysregulated in blood and brain from schizophrenia patients, Schizophrenia Research, vol.168, issue.1-2, pp.434-443, 2015.
DOI : 10.1016/j.schres.2015.08.010

URL : https://hal.archives-ouvertes.fr/hal-01575079

J. L. Hess, Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia, Schizophrenia Research, vol.176, issue.2-3, pp.114-124, 2016.
DOI : 10.1016/j.schres.2016.07.006

L. W. Harris, Comparison of Peripheral and Central Schizophrenia Biomarker Profiles, PLoS ONE, vol.17, issue.10, p.46368, 2012.
DOI : 10.1371/journal.pone.0046368.s006

URL : http://doi.org/10.1371/journal.pone.0046368

Y. Xu, Altered expression of mRNA profiles in blood of early-onset schizophrenia, Scientific Reports, vol.46, issue.1, p.16767, 2016.
DOI : 10.18637/jss.v046.i11

J. Liu and V. D. Calhoun, A review of multivariate analyses in imaging genetics, Frontiers in Neuroinformatics, vol.70, issue.192, p.29, 2014.
DOI : 10.1016/j.biopsych.2011.04.019

C. Grellmann, Comparison of variants of canonical correlation analysis and partial least squares for combined analysis of MRI and genetic data, NeuroImage, vol.107, pp.289-310, 2015.
DOI : 10.1016/j.neuroimage.2014.12.025

A. Tenenhaus, Variable selection for generalized canonical correlation analysis, Biostatistics, vol.15, issue.3, pp.569-583, 2014.
DOI : 10.1093/biostatistics/kxu001

URL : https://hal.archives-ouvertes.fr/hal-01071432

O. P. Gunther, Novel Multivariate Methods for Integration of Genomics and Proteomics Data: Applications in a Kidney Transplant Rejection Study, OMICS: A Journal of Integrative Biology, vol.18, issue.11, pp.682-695, 2014.
DOI : 10.1089/omi.2014.0062

D. Rajasundaram, Understanding the Relationship between Cotton Fiber Properties and Non-Cellulosic Cell Wall Polysaccharides, PLoS ONE, vol.248, issue.11, p.112168, 2014.
DOI : 10.1371/journal.pone.0112168.s002

URL : http://doi.org/10.1371/journal.pone.0112168

A. Hayashi-takagi, M. P. Vawter, and K. Iwamoto, Peripheral Biomarkers Revisited: Integrative Profiling of Peripheral Samples for Psychiatric Research, Biological Psychiatry, vol.75, issue.12, pp.920-928, 2014.
DOI : 10.1016/j.biopsych.2013.09.035

C. Crisafulli, A. Drago, M. Calabro, E. Spina, and A. Serretti, A molecular pathway analysis informs the genetic background at risk for schizophrenia, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol.59, pp.21-30, 2015.
DOI : 10.1016/j.pnpbp.2014.12.009

S. Horvath and K. Mirnics, Immune System Disturbances in Schizophrenia, Biological Psychiatry, vol.75, issue.4, pp.316-323, 2014.
DOI : 10.1016/j.biopsych.2013.06.010

A. K. Mcallister, Major Histocompatibility Complex I in Brain Development and Schizophrenia, Biological Psychiatry, vol.75, issue.4, pp.262-268, 2014.
DOI : 10.1016/j.biopsych.2013.10.003

J. Perez-santiago, A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia, Journal of Psychiatric Research, vol.46, issue.11, pp.1464-1474, 2012.
DOI : 10.1016/j.jpsychires.2012.08.005

E. Sterneck, Selectively enhanced contextual fear conditioning in mice lacking the transcriptional regulator CCAAT/enhancer binding protein delta, Proc. Natl. Acad. Sci. U S A 95, pp.10908-10913, 1998.

T. Isosaka, S. Kida, T. Kohno, K. Hattori, and S. Yuasa, Hippocampal Fyn activity regulates extinction of contextual fear, NeuroReport, vol.20, issue.16, pp.1461-1465, 2009.
DOI : 10.1097/WNR.0b013e32833203a8

M. E. Jones, C. L. Lebonville, D. Barrus, and D. T. Lysle, The Role of Brain Interleukin-1 in Stress-Enhanced Fear Learning, Neuropsychopharmacology, vol.38, issue.5, pp.1289-1296, 2015.
DOI : 10.1016/j.nbd.2009.12.028

F. Sananbenesi, A. Fischer, C. Schrick, J. Spiess, and J. Radulovic, Phosphorylation of Hippocampal Erk-1/2, Elk-1, and p90-Rsk-1 during Contextual Fear Conditioning: Interactions between Erk-1/2 and Elk-1, Molecular and Cellular Neuroscience, vol.21, issue.3, pp.463-476, 2002.
DOI : 10.1006/mcne.2002.1188

L. Wiemerslage, gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images, European Journal of Neuroscience, vol.28, issue.9, pp.1173-1180, 2016.
DOI : 10.1007/s10571-007-9236-z

M. M. Brzozka and M. J. Rossner, Deficits in trace fear memory in a mouse model of the schizophrenia risk gene TCF4, Behavioural Brain Research, vol.237, pp.348-356, 2013.
DOI : 10.1016/j.bbr.2012.10.001

T. M. Eriksson, Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11, Molecular Psychiatry, vol.33, issue.10, pp.1096-1105, 2013.
DOI : 10.1038/sj.npp.1301234

P. M. Fisher, C. L. Grady, M. K. Madsen, S. C. Strother, and G. M. Knudsen, 5-HTTLPR differentially predicts brain network responses to emotional faces, Human Brain Mapping, vol.915, issue.7, pp.2842-2851, 2015.
DOI : 10.1016/S0006-8993(01)02823-2

K. Szklarczyk, M. Korostynski, S. Golda, W. Solecki, and R. Przewlocki, Genotypedependent consequences of traumatic stress in four inbred mouse strains, Genes. Brain. Behav, vol.11, pp.977-985, 2012.

B. B. Quednow, M. M. Brzozka, and M. J. Rossner, Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective, Cellular and Molecular Life Sciences, vol.153, issue.1, pp.2815-2835, 2014.
DOI : 10.1002/humu.21639

H. Yang, J. Liu, J. Sui, G. Pearlson, and V. D. Calhoun, A Hybrid Machine Learning Method for Fusing fMRI and Genetic Data: Combining both Improves Classification of Schizophrenia, Frontiers in Human Neuroscience, vol.4, p.192, 2010.
DOI : 10.3389/fnhum.2010.00192

T. E. Goldberg, The serotonin transporter gene and disease modification in psychosis: Evidence for systematic differences in allelic directionality at the 5-HTTLPR locus, Schizophrenia Research, vol.111, issue.1-3, pp.103-108, 2009.
DOI : 10.1016/j.schres.2009.03.021

L. Clerc and S. , A double amino-acid change in the HLA-A peptide-binding groove is associated with response to psychotropic treatment in patients with schizophrenia, Translational Psychiatry, vol.460, issue.7, p.608, 2015.
DOI : 10.1016/j.pnpbp.2008.12.006

H. Stefansson, Common variants conferring risk of schizophrenia, Nature, vol.155, pp.744-747, 2009.
DOI : 10.1038/nature08186

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077530

S. Steinberg, Common variants at VRK2 and TCF4 conferring risk of schizophrenia, Human Molecular Genetics, vol.20, issue.20, pp.4076-4081, 2011.
DOI : 10.1093/hmg/ddr325

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298077

C. Colantuoni, Temporal dynamics and genetic control of transcription in the human prefrontal cortex, Nature, vol.27, issue.7370, pp.519-523, 2011.
DOI : 10.1038/onc.2008.327

J. A. Miller, Transcriptional landscape of the prenatal human brain, Nature, vol.5, issue.7495, pp.199-206, 2014.
DOI : 10.1186/1471-2105-5-17

M. Comte, Dissociating Bottom-Up and Top-Down Mechanisms in the Cortico-Limbic System during Emotion Processing, Cerebral Cortex, vol.26, issue.1, pp.144-155, 2016.
DOI : 10.1093/cercor/bhu185

URL : https://hal.archives-ouvertes.fr/hal-01383987

T. Frodl, Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder, Translational Psychiatry, vol.34, issue.3, p.88, 2012.
DOI : 10.1001/archgenpsychiatry.2011.60

R. Hashimoto, K. C. Backer, F. Tassone, R. J. Hagerman, and S. M. Rivera, An fMRI study of the prefrontal activity during the performance of a working memory task in premutation carriers of the fragile X mental retardation 1 gene with and without fragile X-associated tremor/ataxia syndrome (FXTAS), Journal of Psychiatric Research, vol.45, issue.1, pp.36-43, 2011.
DOI : 10.1016/j.jpsychires.2010.04.030

S. Y. Kim, F. Tassone, T. J. Simon, and S. M. Rivera, Altered neural activity in the ???when??? pathway during temporal processing in fragile X premutation carriers, Behavioural Brain Research, vol.261
DOI : 10.1016/j.bbr.2013.12.044

S. Y. Kim, Fear-Specific Amygdala Function in Children and Adolescents on the Fragile X Spectrum: A Dosage Response of the FMR1 Gene, Cerebral Cortex, vol.24, issue.3, pp.600-613, 2014.
DOI : 10.1093/cercor/bhs341

D. Hessl, Decreased Fragile X Mental Retardation Protein Expression Underlies Amygdala Dysfunction in Carriers of the Fragile X Premutation, Biological Psychiatry, vol.70, issue.9, pp.859-865, 2011.
DOI : 10.1016/j.biopsych.2011.05.033

J. Arloth, Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders, Neuron, vol.86, issue.5, pp.1189-1202, 2015.
DOI : 10.1016/j.neuron.2015.05.034

Y. Mochizuki, Phosphatidylinositol 3-Phosphatase Myotubularin-related Protein 6 (MTMR6) Is Regulated by Small GTPase Rab1B in the Early Secretory and Autophagic Pathways, Journal of Biological Chemistry, vol.9, issue.2, pp.1009-1021, 2013.
DOI : 10.1073/pnas.1207021109

S. Srivastava, The Phosphatidylinositol 3-Phosphate Phosphatase Myotubularin- Related Protein 6 (MTMR6) Is a Negative Regulator of the Ca2+-Activated K+ Channel KCa3.1, Molecular and Cellular Biology, vol.25, issue.9, pp.3630-3638, 2005.
DOI : 10.1128/MCB.25.9.3630-3638.2005

P. Svenningsson, Y. Kim, J. Warner-schmidt, Y. S. Oh, and P. Greengard, p11 and its role in depression and therapeutic responses to antidepressants, Nature Reviews Neuroscience, vol.18, issue.10, pp.11-673, 2013.
DOI : 10.1038/mp.2012.21

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933996

J. E. Shin, Involvement of the dorsolateral prefrontal cortex and superior temporal sulcus in impaired social perception in schizophrenia, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol.58, pp.81-88, 2015.
DOI : 10.1016/j.pnpbp.2014.12.006

K. Hugdahl, Auditory hallucinations: a review of the ERC " VOICE " project, World J. Psychiatry, vol.5, pp.193-209, 2015.

S. K. Lee, Abnormal Neural Processing during Emotional Salience Attribution of Affective Asymmetry in Patients with Schizophrenia, PLoS ONE, vol.30, issue.3, p.90792, 2014.
DOI : 10.1371/journal.pone.0090792.s007

K. Kasai, Progressive Decrease of Left Superior Temporal Gyrus Gray Matter Volume in Patients With First-Episode Schizophrenia, American Journal of Psychiatry, vol.160, issue.1, pp.156-164, 2003.
DOI : 10.1176/appi.ajp.160.1.156

S. J. Borgwardt, Regional Gray Matter Volume Abnormalities in the At Risk Mental State, Biological Psychiatry, vol.61, issue.10, pp.1148-1156, 2007.
DOI : 10.1016/j.biopsych.2006.08.009

T. Takahashi, Progressive Gray Matter Reduction of the Superior Temporal Gyrus During Transition to Psychosis, Archives of General Psychiatry, vol.66, issue.4, pp.366-376, 2009.
DOI : 10.1001/archgenpsychiatry.2009.12

D. R. Weinberger, K. F. Berman, and R. F. Zec, Physiologic Dysfunction of Dorsolateral Prefrontal Cortex in Schizophrenia, Archives of General Psychiatry, vol.43, issue.2, pp.114-124, 1986.
DOI : 10.1001/archpsyc.1986.01800020020004

D. P. Eisenberg and K. F. Berman, Executive Function, Neural Circuitry, and Genetic Mechanisms in Schizophrenia, Neuropsychopharmacology, vol.154, issue.1, pp.258-277, 2010.
DOI : 10.1016/j.acra.2007.09.026

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794926

N. Kaymaz and J. Van-os, Heritability of Structural Brain Traits, Int. Rev. Neurobiol, vol.89, pp.85-130, 2009.
DOI : 10.1016/S0074-7742(09)89005-3

A. Mancini-marie, Fusiform gyrus and possible impairment of the recognition of emotional expression in schizophrenia subjects with blunted affect: a fMRI preliminary report, Brain. Cogn, vol.54, pp.153-155, 2004.

J. Quintana, T. Wong, E. Ortiz-portillo, S. R. Marder, and J. C. Mazziotta, Right lateral fusiform gyrus dysfunction during facial information processing in schizophrenia, Biological Psychiatry, vol.53, issue.12, pp.1099-1112, 2003.
DOI : 10.1016/S0006-3223(02)01784-5

T. Onitsuka, Fusiform Gyrus Volume Reduction and Facial Recognition in Chronic Schizophrenia, Archives of General Psychiatry, vol.60, issue.4, pp.349-355, 2003.
DOI : 10.1001/archpsyc.60.4.349

T. Takahashi, A follow-up MRI study of the superior temporal subregions in schizotypal disorder and first-episode schizophrenia, Schizophrenia Research, vol.119, issue.1-3, pp.65-74, 2010.
DOI : 10.1016/j.schres.2009.12.006

A. Etkin, T. Egner, and R. Kalisch, Emotional processing in anterior cingulate and medial prefrontal cortex, Trends in Cognitive Sciences, vol.15, issue.2, pp.85-93, 2011.
DOI : 10.1016/j.tics.2010.11.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035157

C. B. Holroyd and A. Umemoto, The research domain criteria framework: The case for anterior cingulate cortex, Neuroscience & Biobehavioral Reviews, vol.71, pp.418-443, 2016.
DOI : 10.1016/j.neubiorev.2016.09.021

F. S. Bersani, Cingulate Cortex in Schizophrenia: its relation with negative symptoms and psychotic onset. A review study., Acta Neuropsychiatrica, vol.18, pp.3354-3367, 2014.
DOI : 10.1111/j.1601-5215.2011.00640.x

J. S. Lee, S. Jung, I. H. Park, and J. J. Kim, Neural Basis of Anhedonia and Amotivation in Patients with Schizophrenia: The Role of Reward System, Current Neuropharmacology, vol.13, issue.6, pp.750-759, 2015.
DOI : 10.2174/1570159X13666150612230333

O. Issler and A. Chen, Determining the role of microRNAs in psychiatric disorders, Nature Reviews Neuroscience, vol.516, issue.4, pp.201-212, 2015.
DOI : 10.1038/npp.2010.250

T. G. Van-erp, Schizophrenia miR-137 Locus Risk Genotype Is Associated with Dorsolateral Prefrontal Cortex Hyperactivation, Biological Psychiatry, vol.75, issue.5, pp.398-405, 2014.
DOI : 10.1016/j.biopsych.2013.06.016

S. J. Glatt, O. S. Cohen, S. V. Faraone, and M. T. Tsuang, Dysfunctional gene splicing as a potential contributor to neuropsychiatric disorders, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.31, issue.10, pp.382-392, 2011.
DOI : 10.1016/j.tibs.2006.08.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082621

O. S. Cohen, Transcriptomic analysis of postmortem brain identifies dysregulated splicing events in novel candidate genes for schizophrenia, Schizophrenia Research, vol.142, issue.1-3, pp.188-199, 2012.
DOI : 10.1016/j.schres.2012.09.015

N. C. Andreasen, Remission in Schizophrenia: Proposed Criteria and Rationale for Consensus, American Journal of Psychiatry, vol.162, issue.3, pp.441-449, 2005.
DOI : 10.1176/appi.ajp.162.3.441

R. C. Oldfield, The assessment and analysis of handedness: The Edinburgh inventory, Neuropsychologia, vol.9, issue.1, pp.97-113, 1971.
DOI : 10.1016/0028-3932(71)90067-4

N. Tottenham, The NimStim set of facial expressions: Judgments from untrained research participants, Psychiatry Research, vol.168, issue.3, pp.242-249, 2009.
DOI : 10.1016/j.psychres.2008.05.006

P. J. Lang and M. M. Bradlley, International affective picture system (IAPS): affective ratings of pictures and instruction manual, 2008.

J. A. Maldjian, P. J. Laurienti, R. A. Kraft, and J. H. Burdette, An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets, NeuroImage, vol.19, issue.3, pp.1233-1239, 2003.
DOI : 10.1016/S1053-8119(03)00169-1

M. Brett, I. S. Johnsrude, and A. M. Owen, OPINIONThe problem of functional localization in the human brain, Nature Reviews Neuroscience, vol.3, issue.3, pp.243-249, 2002.
DOI : 10.1038/nrn756

R. Belzeaux, Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl, Psychiatry, vol.2, p.185, 2012.
DOI : 10.1038/tp.2012.112

URL : https://hal.archives-ouvertes.fr/hal-01575056

N. H. Timm, Applied multivariate analysis, 2002.
DOI : 10.1007/b98963

A. Tenenhaus and M. Tenenhaus, Regularized Generalized Canonical Correlation Analysis, Psychometrika, vol.12, issue.9, pp.257-284, 2011.
DOI : 10.1007/BFb0062108

URL : https://hal.archives-ouvertes.fr/hal-00578321

A. Tenenhaus and M. Tenenhaus, Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis, European Journal of Operational Research, vol.238, issue.2, pp.391-403, 2014.
DOI : 10.1016/j.ejor.2014.01.008

URL : https://hal.archives-ouvertes.fr/hal-01071421

C. Meng, Dimension reduction techniques for the integrative analysis of multi-omics data, Briefings in Bioinformatics, vol.17, issue.4, pp.628-641, 2016.
DOI : 10.1093/bib/bbv108

C. Meng, B. Kuster, A. C. Culhane, and A. M. Gholami, A multivariate approach to the integration of multi-omics datasets, BMC Bioinformatics, vol.15, issue.1, p.162, 2014.
DOI : 10.1073/pnas.1203085109

I. Garali, A strategy for multimodal data integration: application to biomarkers identification in spinocerebellar ataxia, Briefings in Bioinformatics, 2017.
DOI : 10.1093/bib/bbx060

H. Hotelling, RELATIONS BETWEEN TWO SETS OF VARIATES, Biometrika, vol.28, issue.3-4, pp.321-377, 1936.
DOI : 10.1093/biomet/28.3-4.321

L. R. Tucker, An inter-battery method of factor analysis, Psychometrika, vol.6, issue.2, pp.111-136, 1958.
DOI : 10.1111/j.2044-8317.1950.tb00284.x

A. L. Van-den-wollenberg, Redundancy analysis an alternative for canonical correlation analysis, Psychometrika, vol.42, issue.2, pp.207-219, 1977.
DOI : 10.1007/BF02294050

F. Manzella, S. E. Maloney, and G. Taylor, Smoking in schizophrenic patients: A critique of the self-medication hypothesis, World Journal of Psychiatry, vol.5, issue.1, pp.35-46, 2015.
DOI : 10.5498/wjp.v5.i1.35

P. Beineke, A whole blood gene expression-based signature for smoking status, BMC Medical Genomics, vol.21, issue.3, p.58, 2012.
DOI : 10.1615/CritRevEukarGeneExpr.v21.i3.10

URL : http://doi.org/10.1186/1755-8794-5-58

S. Paul and S. A. Amundson, Differential Effect of Active Smoking on Gene Expression in Male and Female Smokers, Journal of Carcinogenesis & Mutagenesis, vol.05, issue.06, p.198, 2014.
DOI : 10.4172/2157-2518.1000198

M. L. Sinkus, C. E. Adams, J. Logel, R. Freedman, and S. Leonard, Expression of immune genes on chromosome 6p21.3???22.1 in schizophrenia, Brain, Behavior, and Immunity, vol.32, pp.51-62, 2013.
DOI : 10.1016/j.bbi.2013.01.087