Clustering proteins from interaction networks for the prediction of cellular functions

Abstract : Background Developing reliable and efficient strategies allowing to infer a function to yet uncharacterized proteins based on interaction networks is of crucial interest in the current context of high-throughput data generation. In this paper, we develop a new algorithm for clustering vertices of a protein-protein interaction network using a density function, providing disjoint classes. Results Applied to the yeast interaction network, the classes obtained appear to be biological significant. The partitions are then used to make functional predictions for uncharacterized yeast proteins, using an annotation procedure that takes into account the binary interactions between proteins inside the classes. We show that this procedure is able to enhance the performances with respect to previous approaches. Finally, we propose a new annotation for 37 previously uncharacterized yeast proteins. Conclusion We believe that our results represent a significant improvement for the inference of cellular functions, that can be applied to other organism as well as to other type of interaction graph, such as genetic interactions.
Type de document :
Article dans une revue
BMC Bioinformatics, BioMed Central, 2004, 5 (1), pp.95. 〈10.1186/1471-2105-5-95〉
Liste complète des métadonnées

https://hal-amu.archives-ouvertes.fr/hal-01596222
Contributeur : Lionel Spinelli <>
Soumis le : mercredi 19 décembre 2018 - 14:46:29
Dernière modification le : jeudi 20 décembre 2018 - 09:16:07

Fichier

document(12).pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

C. Brun, C Herrmann, A Guenoche. Clustering proteins from interaction networks for the prediction of cellular functions. BMC Bioinformatics, BioMed Central, 2004, 5 (1), pp.95. 〈10.1186/1471-2105-5-95〉. 〈hal-01596222〉

Partager

Métriques

Consultations de la notice

74

Téléchargements de fichiers

8