J. N. Onuchic, D. N. Beratan, J. R. Winkler, and H. B. Gray, Pathway Analysis of Protein Electron-Transfer Reactions, Annual Review of Biophysics and Biomolecular Structure, vol.21, issue.1, pp.349-377, 1992.
DOI : 10.1146/annurev.bb.21.060192.002025

C. C. Page, C. C. Moser, X. Chen, and P. L. Dutton, Natural engineering principles of electron tunnelling in biological oxidation???reduction, Nature, vol.1057, issue.6757, pp.402-449, 1999.
DOI : 10.1016/S0005-2728(05)80107-0

C. C. Page, C. C. Moser, and P. L. Dutton, Mechanism for electron transfer within and between proteins, Current Opinion in Chemical Biology, vol.7, issue.5, pp.551-556, 2003.
DOI : 10.1016/j.cbpa.2003.08.005

S. Rackovsky and D. A. Goldstein, On the redox conformational change in cytochrome c., Proc. Natl
DOI : 10.1073/pnas.81.18.5901

T. Takano and R. E. Dickerson, Conformation change of cytochrome c, Journal of Molecular Biology, vol.153, issue.1, pp.95-115, 1981.
DOI : 10.1016/0022-2836(81)90529-5

G. W. Bushnell, G. V. Louie, and G. D. Brayer, High-resolution three-dimensional structure of horse heart cytochrome c, Journal of Molecular Biology, vol.214, issue.2, pp.214-585, 1990.
DOI : 10.1016/0022-2836(90)90200-6

L. Rivas, D. H. Murgida, and P. Hildebrandt, Immobilized on Electrodes via Hydrophobic Interactions, The Journal of Physical Chemistry B, vol.106, issue.18, pp.4823-4830, 2002.
DOI : 10.1021/jp014175m

M. J. Eddowes and H. A. Hill, Electrochemistry of horse heart cytochrome c, Journal of the American Chemical Society, vol.101, issue.16, pp.4461-4464, 1979.
DOI : 10.1021/ja00510a003

J. Wei, H. Liu, D. E. Khoshtariya, H. Yamamoto, A. Dick et al., Electron-Transfer Dynamics of Cytochrome C: A Change in the Reaction Mechanism with Distance, Angew. Chem. Int. Ed, pp.41-4700, 2002.

X. Chen, R. Ferrigno, J. Yang, and G. M. Whitesides, Redox Properties of Cytochrome c Adsorbed on Self-Assembled Monolayers: A Probe for Protein Conformation and Orientation, Langmuir, pp.18-7009, 2002.

G. Wang, M. Wang, Z. Wu, W. Bao, Y. Zhou et al., Dependence of the direct electron transfer activity and adsorption kinetics of cytochrome c on interfacial charge properties, The Analyst, vol.132, issue.19, pp.138-5777, 2013.
DOI : 10.1021/ja910707r

M. J. Tarlov and E. F. Bowden, Electron-transfer reaction of cytochrome c adsorbed on carboxylic acid terminated alkanethiol monolayer electrodes, Journal of the American Chemical Society, vol.113, issue.5, pp.1847-1849, 1991.
DOI : 10.1021/ja00005a068

M. C. Leopold and E. F. Bowden, Influence of Gold Substrate Topography on the Voltammetry of Cytochrome c Adsorbed on Carboxylic Acid Terminated Self-Assembled Monolayers, Langmuir, pp.18-2239, 2002.

R. A. Clark and E. F. Bowden, Voltammetric Peak Broadening for Cytochrome c/Alkanethiolate Monolayer Structures: Dispersion of Formal Potentials, Langmuir, pp.13-559, 1997.

Y. Liu, S. Cui, J. Zhao, and Z. Yang, Direct electrochemistry behavior of cytochrome c/l-cysteine modified electrode and its electrocatalytic oxidation to nitric oxide, Bioelectrochemistry, vol.70, issue.2, pp.70-416, 2007.
DOI : 10.1016/j.bioelechem.2006.06.001

S. Terrettaz, J. Cheng, C. J. Miller, and R. D. Guiles, via Insulated Electrode Voltammetry, Journal of the American Chemical Society, vol.118, issue.33, pp.7857-7858, 1996.
DOI : 10.1021/ja960866y

H. Yue and D. H. Waldeck, Understanding interfacial electron transfer to monolayer protein assemblies, Current Opinion in Solid State and Materials Science, vol.9, issue.1-2, pp.28-36, 2005.
DOI : 10.1016/j.cossms.2006.03.005

H. Yue, D. H. Waldeck, J. Petrovi?, and R. A. Clark, The Effect of Ionic Strength on the Electron-Transfer Rate of Surface Immobilized Cytochrome c, J. Phys. Chem. B, pp.110-5062, 2006.

D. H. Murgida and P. Hildebrandt, Disentangling interfacial redox processes of proteins by SERR spectroscopy, Chemical Society Reviews, vol.55, issue.5, pp.937-945, 2008.
DOI : 10.1039/b705976k

M. Sezer, D. Millo, I. M. Weidinger, I. Zebger, and P. Hildebrandt, Analyzing the catalytic processes of immobilized redox enzymes by vibrational spectroscopies, IUBMB Life, vol.50, issue.6, pp.455-464, 2012.
DOI : 10.1002/anie.201006046

R. A. Capaldi, V. Darley-usmar, S. Fuller, and F. Millett, Structural and functional features of the interaction of cytochrome c with complex III and cytochrome c oxidase, FEBS Lett, pp.138-139, 1982.

F. Millett, C. De-jong, L. Paulson, and R. A. Capaldi, Identification of specific carboxylate groups on cytochrome c oxidase that are involved in binding cytochrome c, Biochemistry, vol.22, issue.3, pp.22-546, 1983.
DOI : 10.1021/bi00272a004

W. H. Koppenol and E. Margoliash, The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications, J. Biol. Chem, vol.257, pp.4426-4437, 1982.

M. E. Than, P. Hof, R. Huber, G. P. Bourenkov, H. D. Bartunik et al., Thermus thermophilus cytochrome-c552: a new highly thermostable cytochrome-c structure obtained by MAD phasing1, J. Mol. Biol, pp.271-629, 1997.

S. Bernad, T. Soulimane, and S. Lecomte, Redox and conformational equilibria of cytochrome c552 from Thermus thermophilus adsorbed on a chemically modified silver electrode probed by surfaceenhanced resonance Raman spectroscopy, J. Raman Spectrosc, pp.35-47, 2004.

A. Giuffrè, E. Forte, G. Antonini, E. D. Itri, M. Brunori et al., Kinetic Properties of ba3 Oxidase from Thermus thermophilus: Effect of Temperature, Biochemistry, pp.38-1057, 1999.

J. A. Lyons, D. Aragao, O. Slattery, A. V. Pisliakov, T. Soulimane et al., Structural insights into electron transfer in caa3-type cytochrome oxidase, Nature, vol.65, issue.7408, pp.487-514, 2012.
DOI : 10.1107/S0907444909007835

G. Moore and G. W. Pettigrew, Cytochromes c. Evolutionary, Structural and Physicochemical Aspects, 1990.

H. Chang, Y. Ahn, L. A. Pace, M. T. Lin, Y. Lin et al., The Diheme Cytochrome c4 from Vibrio cholerae Is a Natural Electron Donor to the Respiratory cbb3 Oxygen Reductase, Biochemistry, pp.49-7494, 2010.

F. A. Leitch, K. R. Brown, and G. W. Pettigrew, Complexity in the redox titration of the dihaem cytochrome c4, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.808, issue.2, pp.808-213, 1985.
DOI : 10.1016/0005-2728(85)90001-5

L. S. Conrad, J. J. Karlsson, and J. Ulstrup, Electron Transfer and Spectral alpha-Band Properties of the Di-Heme Protein Cytochrome c4 from Pseudomonas Stutzeri, European Journal of Biochemistry, vol.26, issue.1, pp.231-133, 1995.
DOI : 10.1016/0022-2836(84)90417-0

S. Robin, M. Arese, E. Forte, P. Sarti, A. Giuffrè et al., A Sulfite Respiration Pathway from Thermus thermophilus and the Key Role of Newly Identified Cytochrome c550, Journal of Bacteriology, vol.193, issue.15, pp.193-3988, 2011.
DOI : 10.1128/JB.05186-11

S. Robin, M. Arese, E. Forte, P. Sarti, O. Kolaj-robin et al., Functional Dissection of the Multi-Domain Di-Heme Cytochrome c550 from Thermus thermophilus, PLoS ONE, vol.1655, issue.1, p.55129, 2013.
DOI : 10.1371/journal.pone.0055129.t001

URL : https://hal.archives-ouvertes.fr/pasteur-01054302

D. Moss, E. Nabedryk, J. Breton, and W. Mäntele, Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry, Eur. J. Biochem, pp.187-565, 1990.

P. L. Dutton and J. S. Leigh, Electron spin resonance characterization of Chromatium D hemes, nonheme irons and the components involved in primary photochemistry, Biochim. Biophys. Acta, pp.314-178, 1973.

P. Soulimane and . Hellwig, Evidence for Distinct Electron Transfer Processes in Terminal Oxidases from Different Origin by Means of Protein Film Voltammetry, J. Am. Chem. Soc, vol.136, pp.10854-10857, 2014.

J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, pp.55-75, 1951.
DOI : 10.1039/df9511100055

G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nature Physical Science, vol.241, issue.105, pp.241-261, 1973.
DOI : 10.1038/physci241020a0

S. Trasatti and O. A. Petrii, Real surface area measurements in electrochemistry, Journal of Electroanalytical Chemistry, vol.327, issue.1-2, pp.353-376, 1992.
DOI : 10.1016/0022-0728(92)80162-W

E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.101, issue.1, pp.19-28, 1979.
DOI : 10.1016/S0022-0728(79)80075-3

R. Campos and E. E. Ferapontova, Electrochemistry of weakly adsorbed species: Voltammetric analysis of electron transfer between gold electrodes and Ru hexaamine electrostatically interacting with DNA duplexes, Electrochimica Acta, vol.126, pp.126-151, 2014.
DOI : 10.1016/j.electacta.2013.07.083

J. A. Fee, Y. Chen, T. R. Todaro, K. L. Bren, K. M. Patel et al., : Biochemical, spectral, and structural characterization of the recombinant protein, Protein Science, vol.259, issue.11, pp.2074-2084, 2000.
DOI : 10.1016/S0167-4838(97)00176-3

D. F. Wilson, J. G. Lindsay, and E. S. Brocklehurst, Heme-heme interaction in cytochrome oxidase, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.256, issue.2, pp.256-277, 1972.
DOI : 10.1016/0005-2728(72)90058-8

P. Nicholls and L. C. Petersen, Haem?haem interactions in cytochrome aa3 during the anaerobicaerobic transition, Biochim. Biophys. Acta, pp.357-462, 1974.

H. Santos, J. J. Moura, I. Moura, J. Legall, and A. V. Xavier, NMR studies of electron transfer mechanisms in a protein with interacting redox centres: Desulfovibrio gigas cytochrome c3, European Journal of Biochemistry, vol.12, issue.2, pp.141-283, 1984.
DOI : 10.1016/0014-5793(82)80154-3

M. Coletta, T. Catarino, J. Legall, and A. V. Xavier, A thermodynamic model for the cooperative functional properties of the tetraheme cytochrome c3 from Desulfovibrio gigas, European Journal of Biochemistry, vol.202, issue.3, pp.202-1101, 1991.
DOI : 10.1016/0079-6107(85)90004-5

Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, and I. Willner, "Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle, Science, vol.299, issue.5614, pp.299-1877, 2003.
DOI : 10.1126/science.1080664

J. Feng, G. Zhao, J. Xu, and H. Chen, Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan, Analytical Biochemistry, vol.342, issue.2, pp.342-280, 2005.
DOI : 10.1016/j.ab.2005.04.040

P. S. Jensen, Q. Chi, F. B. Grumsen, J. M. Abad, A. Horsewell et al., Gold Nanoparticle Assisted Assembly of a Heme Protein for Enhancement of Long-Range Interfacial Electron Transfer, The Journal of Physical Chemistry C, vol.111, issue.16, pp.111-6124, 2007.
DOI : 10.1021/jp068453z

M. A. Rahman, H. Noh, and Y. Shim, Direct Electrochemistry of Laccase Immobilized on Au Nanoparticles Encapsulated-Dendrimer Bonded Conducting Polymer: Application for a Catechin Sensor, Analytical Chemistry, vol.80, issue.21, pp.80-8020, 2008.
DOI : 10.1021/ac801033s

J. M. Abad, M. Gass, A. Bleloch, and D. J. Schiffrin, Direct Electron Transfer to a Metalloenzyme Redox Center Coordinated to a Monolayer-Protected Cluster, Journal of the American Chemical Society, vol.131, issue.29, pp.131-10229, 2009.
DOI : 10.1021/ja9026693

E. Marchi and . Lojou, Hydrogen bioelectrooxidation on gold nanoparticle-based electrodes modified by Aquifex aeolicus hydrogenase: Application to hydrogen/oxygen enzymatic biofuel cells, Bioelectrochemistry, vol.106, pp.47-55, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01150369

D. Fapyane and E. E. Ferapontova, Enhanced electron transfer between gold nanoparticles and horseradish peroxidase reconstituted onto alkanethiol-modified hemin, Electrochemistry Communications, vol.70, pp.39-42, 2016.
DOI : 10.1016/j.elecom.2016.06.016

F. Melin, H. Xie, T. Meyer, Y. O. Ahn, R. B. Gennis et al., The unusual redox properties of C-type oxidases, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1857, issue.12, pp.1857-1892, 2016.
DOI : 10.1016/j.bbabio.2016.09.009

J. N. Butt and F. A. Armstrong, Voltammetry of Adsorbed Redox Enzymes: Mechanisms in The Potential Dimension, Bioinorganic Electrochemistry, pp.91-128, 2008.
DOI : 10.1007/978-1-4020-6500-2_4

Q. Chi, J. Zhang, J. E. Andersen, and J. Ulstrup, Ordered Assembly and Controlled Electron Transfer of the Blue Copper Protein Azurin at Gold (111) Single-Crystal Substrates, The Journal of Physical Chemistry B, vol.105, issue.20, pp.105-4669, 2001.
DOI : 10.1021/jp0105589

K. Fujita, N. Nakamura, H. Ohno, B. S. Leigh, K. Niki et al., Mimicking Protein?Protein Electron Transfer: Voltammetry of Pseudomonas aeruginosa Azurin and the Thermus thermophilus CuA Domain at ?-Derivatized Self-Assembled-Monolayer Gold Electrodes, J. Am. Chem. Soc, pp.126-13954, 2004.

Y. Neehaul, Y. Chen, C. Werner, J. A. Fee, B. Ludwig et al., Electrochemical and infrared spectroscopic analysis of the interaction of the CuA domain and cytochrome c552 from Thermus thermophilus, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1817, issue.10, pp.1817-1950, 2012.
DOI : 10.1016/j.bbabio.2012.02.027

A. Dong, P. Huang, and W. S. Caughey, Protein secondary structures in water from second-derivative amide I infrared spectra, Biochemistry, vol.29, issue.13, pp.29-3303, 1990.
DOI : 10.1021/bi00465a022

A. Dong, P. Huang, and W. S. Caughey, Redox-dependent changes in .beta.-extended chain and turn structures of cytochrome c in water solution determined by second derivative amide I infrared spectra, Biochemistry, vol.31, issue.1, pp.31-182, 1992.
DOI : 10.1021/bi00116a027

A. Barth, Infrared spectroscopy of proteins, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1767, issue.9, pp.1767-1073, 2007.
DOI : 10.1016/j.bbabio.2007.06.004

J. Behr, P. Hellwig, W. Mäntele, and H. Michel, Redox Dependent Changes at the Heme Propionates in Cytochrome c Oxidase from Paracoccus denitrificans: Direct Evidence from FTIR Difference Spectroscopy in Combination with Heme Propionate 13C Labeling, Biochemistry, pp.37-7400, 1998.

J. Behr, H. Michel, W. Mäntele, and P. Hellwig, Functional Properties of the Heme Propionates in Cytochrome c Oxidase from Paracoccus denitrificans. Evidence from FTIR Difference Spectroscopy and Site-Directed Mutagenesis, Biochemistry, pp.39-1356, 2000.

M. Wolpert and P. Hellwig, Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500cm???1, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.64, issue.4, pp.987-1001, 2006.
DOI : 10.1016/j.saa.2005.08.025

F. Siebert, W. Mäntele, and W. Kreutz, Evidence for the protonation of two internal carboxylic groups during the photocycle of bacteriorhodopsin, FEBS Letters, vol.33, issue.1, pp.82-87, 1982.
DOI : 10.1016/S0006-3495(81)84889-8

J. Zhang, W. Oettmeier, R. B. Gennis, and P. Hellwig, FTIR Spectroscopic Evidence for the Involvement of an Acidic Residue in Quinone Binding in Cytochrome bd from Escherichia coli, Biochemistry, pp.41-4612, 2002.