G. Alloing, P. De-philip, and J. P. Claverys, Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the gram-positive Streptococcus pneumoniae, J. Mol. Biol, vol.241, pp.44-58, 1994.

G. M. Attardo, C. Lohs, A. Heddi, U. H. Alam, S. Yildirim et al., Analysis of milk gland structure and function in Glossina morsitans: milk protein production, symbiont populations and fecundity, J. Insect Physiol, vol.54, pp.1236-1242, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00391144

S. Balmand, C. Lohs, S. Aksoy, H. , and A. , Tissue distribution and transmission routes for the tsetse fly endosymbionts, J. Invertebr. Pathol, vol.112, pp.116-122, 2013.

E. Belda, A. Moya, S. Bentley, and F. J. Silva, Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies, BMC Genomics, vol.11, p.449, 2010.

B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics, vol.19, pp.185-193, 2003.

S. R. Bordenstein and J. J. Wernegreen, Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates, Mol. Biol. Evol, vol.21, 1981.

S. R. Bordenstein, M. L. Marshall, A. J. Fry, U. Kim, and J. J. Wernegreen, The tripartite associations between bacteriophage, Wolbachia, and arthropods, PLoS Pathog, vol.2, p.43, 2006.

X. Chen, S. Li, A. , and S. , Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriomeassociated endosymbiont, Wigglesworthia glossinidia, J. Mol. Evol, vol.48, pp.49-58, 1999.

Q. Cheng, A. , and S. , Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies, Insect Mol. Biol, vol.8, pp.125-132, 1999.

Q. Cheng, T. D. Ruel, W. Zhou, S. K. Moloo, P. Majiwa et al., Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp, Med. Vet. Entomol, vol.14, pp.44-50, 2000.

C. Dale and S. C. Welburn, The endosymbionts of tsetse flies: manipulating host-parasite interactions, Int. J. Parasitol, vol.31, pp.151-156, 2001.

C. Dale and I. Maudlin, Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans, Int. J. Syst. Bacteriol, vol.49, pp.267-275, 1999.

P. H. Degnan and N. A. Moran, Diverse phage-encoded toxins in a protective insect endosymbiont, Appl. Environ. Microbiol, vol.74, pp.6782-6791, 2008.

G. Dennis, B. T. Sherman, D. A. Hosack, J. Yang, W. Gao et al., DAVID: database for annotation, visualization, and integrated discovery, Genome Biol, vol.4, p.3, 2003.

V. Doudoumis, G. Tsiamis, F. Wamwiri, C. Brelsfoard, U. Alam et al., Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina), BMC Microbiol, vol.1, 2012.

T. El-bacha, M. M. Menezes, M. C. Azevedo-e-silva, M. Sola-penna, and A. T. Da-poian, Mayaro virus infection alters glucose metabolism in cultured cells through activation of the enzyme 6-phosphofructo 1-kinase, Mol. Cell Biochem, vol.266, pp.191-198, 2004.

O. Farikou, F. Njiokou, J. A. Mbida-mbida, G. R. Njitchouang, H. N. Djeunga et al., Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes-an epidemiological approach in two historical human African trypanosomiasis foci in Cameroon, Infect. Genet. Evol, vol.10, pp.115-121, 2010.
DOI : 10.1016/j.meegid.2009.10.008

J. L. Frézil, C. , and D. , Trypanosomiasis, diseases with future: prospects and uncertainty, Bull. Soc. Pathol. Exot, vol.87, pp.391-393, 1994.

A. Geiger, S. Ravel, T. Mateille, J. Janelle, D. Patrel et al., Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius, Mol. Biol. Evol, vol.24, pp.102-109, 2007.
DOI : 10.1093/molbev/msl135

URL : https://academic.oup.com/mbe/article-pdf/24/1/102/3685511/msl135.pdf

A. Geiger, S. Ravel, R. Frutos, C. , and G. , Sodalis glossinidius (Enterobacteriaceae) and vectorial competence of Glossina palpalis gambiensis and Glossina morsitans morsitans for Trypanosoma congolense savannah type, Curr. Microbiol, vol.51, pp.35-40, 2005.

I. Hamidou-soumana, D. Berthier, B. Tchicaya, S. Thevenon, F. Njiokou et al., Population dynamics of Glossina palpalis gambiensis symbionts, Sodalis glossinidius, and Wigglesworthia glossinidia, throughout host-fly development, Infect. Genet. Evol, vol.13, pp.41-48, 2013.

I. Hamidou-soumana, B. Loriod, S. Ravel, B. Tchicaya, G. Simo et al., The transcriptional signatures of Sodalis glossinidius in the Glossina palpalis gambiensis flies negative for Trypanosoma brucei gambiense contrast with those of this symbiont in tsetse flies positive for the parasite: possible involvement of a Sodalis-hosted prophage in fly Trypanosoma refractoriness?, Infect. Genet. Evol, vol.24, pp.41-56, 2014.

Z. Hao, I. Kasumba, M. J. Lehane, W. C. Gibson, J. Kwon et al., Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis, Proc. Natl Acad. Sci. U.S.A, vol.98, pp.12648-12653, 2001.

W. J. Herbert and W. H. Lumsden, Trypanosoma brucei: a rapid "matching" method for estimating the host's parasitemia, Exp. Parasitol, vol.40, pp.427-431, 1976.

J. W. Kim and C. V. Dang, Multifaceted roles of glycolytic enzymes, Trends Biochem. Sci, vol.30, 2005.
DOI : 10.1016/j.tibs.2005.01.005

H. Klemperer, Glucose breakdown in chick embryo cells infected with influenza virus, Virology, vol.13, pp.68-77, 1961.
DOI : 10.1016/0042-6822(61)90033-2

J. O. Lampen and J. B. Nielsen, N-terminal glyceride-cysteine modification of membrane penicillinases in gram-positive bacteria, Methods Enzymol, vol.106, pp.365-368, 1984.

J. Lengeler, G. Drews, and H. Schlegel, Biology of the Prokaryotes, 2009.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 ?C(t) method, Methods, vol.25, pp.402-408, 2001.

E. T. Macleod, I. Maudlin, A. C. Darby, and S. C. Welburn, Antioxidants promote establishment of trypanosome infections in tsetse, Parasitology, vol.134, pp.827-831, 2007.

C. Mathiopoulos, J. P. Mueller, F. J. Slack, C. G. Murphy, S. Patankar et al., A Bacillus subtilis dipeptide transport system expressed early during sporulation, Mol. Microbiol, vol.5, pp.1903-1913, 1991.
DOI : 10.1111/j.1365-2958.1991.tb00814.x

I. Maudlin, E. , and D. S. , Association between intracellular rickettsialike infections of midgut cells and susceptibility to trypanosome infection in Glossina spp, Z Parasitenkd, vol.71, pp.683-687, 1985.

I. Maudlin and S. C. Welburn, Maturation of trypanosome infections in tsetse, Exp. Parasitol, vol.79, pp.202-205, 1994.
DOI : 10.1006/expr.1994.1081

N. A. Moran, P. H. Degnan, S. R. Santos, H. E. Dunbar, and H. Ochman, The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.16919-16926, 2005.

D. R. Moser, G. A. Cook, D. E. Ochs, C. P. Bailey, M. R. Mckane et al., Detection of Trypanosoma congolense and Trypanosoma brucei subspecies by DNA amplification using the polymerase chain reaction, Parasitology, vol.99, pp.57-66, 1989.

K. M. Oliver, J. A. Russell, N. A. Moran, and M. S. Hunter, Facultative bacterial symbionts in aphids confer resistance to parasitic wasps, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.1803-1807, 2003.
DOI : 10.1073/pnas.0335320100

URL : http://www.pnas.org/content/100/4/1803.full.pdf

S. Patramool, P. Surasombatpattana, N. Luplertlop, M. Sévéno, V. Choumet et al., Proteomic analysis of an Aedes albopictus cell line infected with Dengue serotypes 1 and 3 viruses, Parasit Vectors, vol.4, p.138, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00617204

L. Penchenier and J. Itard, Une nouvelle technique de dissection rapide des glandes salivaires et de l'intestin de glossines, Cah. ORSTOM Serie Ent. Méd. Parasitol, vol.1, pp.55-57, 1981.

S. Ravel, P. Grébaut, D. Cuisance, C. , and G. , Monitoring the developmental status of Trypanosoma brucei gambiense in the tsetse fly by means of PCR analysis of anal and saliva drops, Acta Trop, vol.88, pp.191-199, 2003.

S. Ravel, D. Patrel, M. Koffi, V. Jamonneau, C. et al., Cyclical transmission of Trypanosoma brucei gambiense in Glossina palpalis gambiensis displays great differences among field stocks isolates, Acta Trop, vol.100, pp.151-156, 2006.

A. Reiner, D. Yekutieli, and Y. Benjamini, Identifying differentially expressed genes using false discovery rate controlling procedures, Bioinformatics, vol.19, pp.368-375, 2003.
DOI : 10.1093/bioinformatics/btf877

URL : https://academic.oup.com/bioinformatics/article-pdf/19/3/368/717620/btf877.pdf

D. J. Richardson, Bacterial respiration: a flexible process for a changing environment, Microbiology, vol.146, pp.551-571, 2000.

J. B. Ritter, A. S. Wahl, S. Freund, Y. Genzel, R. et al., Metabolic effects of influenza virus infection in cultured animal cells: Intra-and extracellular metabolite profiling, BMC Syst Biol, vol.4, p.61, 2010.

G. Simo, S. Herder, G. Cuny, and J. Hoheisel, Identification of subspecies specific genes differentially expressed in procyclic forms of Trypanosoma brucei subspecies, Infect. Genet. Evol, vol.10, pp.229-237, 2010.

S. Tchankouo-nguetcheu, H. Khun, L. Pincet, P. Roux, M. Bahut et al., Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses, PLoS ONE, vol.5, p.13149, 2010.

S. C. Welburn, K. Arnold, I. Maudlin, and G. W. Gooday, , 1993.

, Rickettsia-like organisms and chitinase production in relation to transmission of trypanosomes by tsetse flies, Parasitology, vol.107, pp.141-145

S. C. Welburn and I. Maudlin, Tsetse-typanosome interactions: rites of passage, Parasitol. Today, vol.15, pp.399-403, 1999.

, Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest