A. K. Jones, E. Sillery, S. P. Albracht, and F. A. Armstrong, Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst, Chem. Commun, pp.866-867, 2002.

F. J. Hoeben, I. Heller, S. P. Albracht, C. Dekker, S. G. Lemay et al., Polymyxin-Coated Au and Carbon Nanotube Electrodes for Stable [NiFe]-Hydrogenase Film Voltammetry, Polymyxin-Coated au and carbon nanotube electrodes for stable [NiFe]-hydrogenase film voltammetry, pp.5925-5931, 2008.
DOI : 10.1021/la703984z

F. J. Hoeben, F. S. Meijer, C. Dekker, S. P. Albracht, H. A. Heering et al., Toward Single-Enzyme Molecule Electrochemistry: [NiFe]-Hydrogenase Protein Film Voltammetry at Nanoelectrodes, ACS Nano, vol.2, issue.12, pp.2497-250410, 1021.
DOI : 10.1021/nn800518d

K. A. Vincent, X. Li, C. F. Blanford, N. A. Belsey, J. H. Weiner et al., Enzymatic catalysis on conducting graphite particles, Nature Chemical Biology, vol.4, issue.12, pp.761-762, 2007.
DOI : 10.1038/nchembio.2007.47

O. Rüdiger, C. Gutiérrez-sánchez, D. Olea, I. A. Pereira, M. Vélez et al., Enzymatic Anodes for Hydrogen Fuel Cells based on Covalent Attachment of Ni-Fe Hydrogenases and Direct Electron Transfer to SAM-Modified Gold Electrodes, Electroanalysis, vol.73, issue.7-8, pp.776-783, 2010.
DOI : 10.1063/1.122751

C. M. Cordas, I. Moura, and J. J. Moura, Direct electrochemical study of the multiple redox centers of hydrogenase from Desulfovibrio gigas, Bioelectrochemistry, vol.74, issue.1, 2008.
DOI : 10.1016/j.bioelechem.2008.04.019

M. A. Alonso-lomillo, O. Rüdiger, A. Maroto-valiente, M. Velez, I. Rodríguez-ramos et al., Oxidation, Hydrogenase-Coated carbon nanotubes for efficient H 2 oxidation, pp.1603-1608, 2007.
DOI : 10.1021/nl070519u

P. Bianco and J. Haladjian, Electrocatalytic Hydrogen-Evolution at the Pyrolytic Graphite Electrode in the Presence of Hydrogenase, Journal of The Electrochemical Society, vol.139, issue.9, pp.2428-2432, 1992.
DOI : 10.1149/1.2221244

M. Guiral-brugna, M. T. Giudici-orticoni, M. Bruschi, and P. Bianco, Electrocatalysis of the hydrogen production by [Fe] hydrogenase from Desulfovibrio vulgaris Hildenborough, Journal of Electroanalytical Chemistry, vol.510, issue.1-2, pp.136-143, 2001.
DOI : 10.1016/S0022-0728(01)00502-2

A. A. Hamdan, P. Liebgott, V. Fourmond, O. Gutiérrez-sanz, A. L. De-lacey et al., Relation between anaerobic inactivation and oxygen tolerance in a large series of NiFe hydrogenase mutants, Proc. Natl. Acad. Sc. USA, pp.19916-19921, 2012.
DOI : 10.1016/j.bioelechem.2009.02.010

D. Lacey, M. Rousset, B. Guigliarelli, C. Léger, and S. , Dementin, O 2 -independent formation of the inactive states of NiFe hydrogenase, Nat. Chem. Biol, vol.9, pp.15-17, 2012.

E. Lojou, X. Luo, M. Brugna, N. Candoni, S. Dementin et al., Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes, JBIC Journal of Biological Inorganic Chemistry, vol.152, issue.200, pp.1157-1167, 2008.
DOI : 10.1016/S0926-6593(65)80141-2

URL : https://hal.archives-ouvertes.fr/hal-00335503

M. J. Lukey, M. M. Roessler, A. Parkin, R. M. Evans, R. A. Davies et al., Oxygen-Tolerant [NiFe]-Hydrogenases: The Individual and Collective Importance of Supernumerary Cysteines at the Proximal Fe-S Cluster, Journal of the American Chemical Society, vol.133, issue.42, pp.16881-1689210, 1021.
DOI : 10.1021/ja205393w

S. Krishnan and F. A. Armstrong, Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures, Chemical Science, vol.1, issue.4, pp.1015-1023, 2012.
DOI : 10.1021/am900155y

M. J. Lukey, A. Parkin, M. M. Roessler, B. J. Murphy, J. Harmer et al., How Escherichia coli is equipped to oxidize hydrogen under different redox conditions., Journal of Biological Chemistry, vol.285, issue.26, pp.3928-3938, 2010.
DOI : 10.1074/jbc.A109.067751

O. Lazarus, T. W. Woolerton, A. Parkin, M. J. Lukey, E. Reisner et al., Water???Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets, Journal of the American Chemical Society, vol.131, issue.40, pp.14154-14155, 2009.
DOI : 10.1021/ja905797w

A. Ciaccafava, A. De-poulpiquet, V. Techer, M. T. Giudici-orticoni, S. Tingry et al., An innovative powerful and mediatorless H2/O2 biofuel cell based on an outstanding bioanode, Electrochemistry Communications, vol.23, pp.25-28, 2012.
DOI : 10.1016/j.elecom.2012.06.035

URL : https://hal.archives-ouvertes.fr/hal-01690641

M. Sezer, S. Frielingsdorf, D. Millo, N. Heidary, T. Utesch et al., Immobilized on Electrodes, The Journal of Physical Chemistry B, vol.115, issue.34, pp.10368-1037410, 1021.
DOI : 10.1021/jp204665r

N. Heidary, T. Utesch, M. Zerball, M. Horch, D. Millo et al., Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase, PLOS ONE, vol.23, issue.11
DOI : 10.1371/journal.pone.0143101.s001

R. Hidalgo, P. A. Ash, A. J. Healy, and K. A. Vincent, Oxidation by a NiFe Hydrogenase, ?? This article is the first demonstration of the potential of the use of the concomitant monitoring of catalytic activity using PFV and detection of IR spectra to show the catalytic relevance of the Ni-L state, pp.7110-7113, 2015.
DOI : 10.1002/ange.201408552

J. A. Cracknell, K. A. Vincent, M. Ludwig, O. Lenz, B. Friedrich et al., Enzymatic oxidation of H 2 in atmospheric O 2 : The electrochemistry of energy generation from trace H 2 by aerobic microorganisms, J. Am. Chem. Soc, 2007.

L. Lauterbach, J. Liu, M. Horch, P. Hummel, A. Schwarze et al., The Hydrogenase Subcomplex of the NAD+-Reducing [NiFe] Hydrogenase from Ralstonia eutropha - Insights into Catalysis and Redox Interconversions, European Journal of Inorganic Chemistry, vol.52, issue.7, pp.2011-1067, 2011.
DOI : 10.1103/PhysRevB.52.2995

A. I. Yaropolov, A. A. Karyakin, S. D. Varfolomeev, and I. V. Berezin, Mechanism of H2-electrooxidation with immobilized hydrogenase, Bioelectrochemistry and Bioenergetics, vol.12, issue.3-4, pp.267-277, 1984.
DOI : 10.1016/0302-4598(84)87009-9

T. Kihara, X. Liu, C. Nakamura, K. Park, S. Han et al., Direct electron transfer to hydrogenase for catalytic hydrogen production using a single-walled carbon nanotube forest, International Journal of Hydrogen Energy, vol.36, issue.13, pp.7523-7529, 2011.
DOI : 10.1016/j.ijhydene.2011.03.135

A. A. Karyakin, S. V. Morozov, E. E. Karyakina, S. D. Varfolomeyev, N. A. Zorin et al., Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase, Electrochemistry Communications, vol.4, issue.5, pp.417-420, 2002.
DOI : 10.1016/S1388-2481(02)00335-1

A. A. Karyakin, S. V. Morozov, O. G. Voronin, N. A. Zorin, E. E. Karyakina et al., The Limiting Performance Characteristics in Bioelectrocatalysis of Hydrogenase Enzymes, Angewandte Chemie International Edition, vol.433, issue.329, pp.7244-7246, 2007.
DOI : 10.1002/anie.200701096

K. So, R. Hamamoto, R. Takeuchi, Y. Kitazumi, O. Shirai et al., Bioelectrochemical analysis of thermodynamics of the catalytic cycle and kinetics of the oxidative inactivation of oxygen-tolerant [NiFe]-hydrogenase, Journal of Electroanalytical Chemistry, vol.766, pp.152-161, 2016.
DOI : 10.1016/j.jelechem.2016.02.009

C. Gutiérrez-sánchez, D. Olea, M. Marques, V. M. Fernández, I. A. Pereira et al., Oriented Immobilization of a Membrane-Bound Hydrogenase onto an Electrode for Direct Electron Transfer, Langmuir, vol.27, issue.10, pp.6449-645710, 1021.
DOI : 10.1021/la200141t

O. Gutiérrez-sanz, C. Tapia, M. C. Marques, S. Zacarias, M. Vélez et al., Oxidation, Angewandte Chemie International Edition, vol.18, issue.9, pp.2684-2687, 2015.
DOI : 10.1007/s00775-013-0986-4

P. Ceccaldi, M. C. Marques, V. Fourmond, I. C. Pereira, and C. Léger, Oxidative inactivation of NiFeSe hydrogenase, Chemical Communications, vol.562, issue.75, pp.14223-14226, 2015.
DOI : 10.1016/j.jelechem.2003.07.035

URL : https://hal.archives-ouvertes.fr/hal-01211493

E. Reisner, D. J. Powell, C. Cavazza, J. C. Fontecilla-camps, and F. A. Armstrong, Nanoparticles, Journal of the American Chemical Society, vol.131, issue.51, pp.18457-18466, 2009.
DOI : 10.1021/ja907923r

D. Mersch, C. Lee, J. Z. Zhang, K. Brinkert, J. C. Fontecilla-camps et al., Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting, Journal of the American Chemical Society, vol.137, issue.26, pp.8541-8549, 2015.
DOI : 10.1021/jacs.5b03737

URL : https://hal.archives-ouvertes.fr/hal-01179249

C. Lee, H. S. Park, J. C. Fontecilla-camps, and E. Reisner, -Protected Silicon Electrode, Angewandte Chemie International Edition, vol.241, issue.20, pp.5971-5974, 2016.
DOI : 10.1016/0039-6028(91)90214-D

S. Morra, F. Valetti, S. J. Sadeghi, P. W. King, T. Meyer et al., Direct electrochemistry of an [FeFe]-hydrogenase on a TiO 2 electrode, Chem. Commun, pp.47-10566, 2011.

M. Hambourger, M. Gervaldo, D. Svedruzic, P. W. King, D. Gust et al., Production in a Photoelectrochemical Biofuel Cell, Journal of the American Chemical Society, vol.130, issue.6, pp.2015-2022, 2008.
DOI : 10.1021/ja077691k

C. Madden, M. D. Vaughn, I. Díez-pérez, K. A. Brown, P. W. King et al., Catalytic Turnover of [FeFe]-Hydrogenase Based on Single-Molecule Imaging, ?? Direct observation of the single enzyme distribution on the Au-SAM surface, 2012.
DOI : 10.1021/ja207461t

T. J. Mcdonald, D. Svedruzic, Y. Kim, J. L. Blackburn, S. B. Zhang et al., Wiring-Up Hydrogenase with Single-Walled Carbon Nanotubes, Nano Letters, vol.7, issue.11, pp.3528-3534, 2007.
DOI : 10.1021/nl072319o

D. Svedru?i?, J. L. Blackburn, R. C. Tenent, J. D. Rocha, T. B. Vinzant et al., High-Performance Hydrogen Production and Oxidation Electrodes with Hydrogenase Supported on Metallic Single-Wall CarbonNanotube Networks, Journal of the American Chemical Society, vol.133, issue.12, pp.4299-430610, 1021.
DOI : 10.1021/ja104785e

C. Baffert, M. Demuez, L. Cournac, B. Burlat, B. Guigliarelli et al., Hydrogen-Activating Enzymes: Activity Does Not Correlate with Oxygen Sensitivity, Angewandte Chemie International Edition, vol.71, issue.11, pp.2052-2054, 2008.
DOI : 10.1002/anie.200704313

URL : https://hal.archives-ouvertes.fr/hal-00336018

G. Goldet, C. Brandmayr, S. T. Stripp, T. Happe, C. Cavazza et al., Electrochemical Kinetic Investigations of the Reactions of [FeFe]-Hydrogenases with Carbon Monoxide and Oxygen: Comparing the Importance of Gas Tunnels and Active-Site Electronic/Redox Effects, Journal of the American Chemical Society, vol.131, issue.41, pp.131-14979, 2009.
DOI : 10.1021/ja905388j

P. Liebgott, F. Leroux, B. Burlat, S. Dementin, C. Baffert et al., Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase, Nature Chemical Biology, vol.275, issue.1, pp.63-70, 2009.
DOI : 10.1038/nchembio.276

URL : https://hal.archives-ouvertes.fr/hal-00677689

V. Fourmond, C. Greco, K. Sybirna, C. Baffert, P. Wang et al., The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster, Nature Chemistry, vol.130, issue.4, pp.336-342, 2014.
DOI : 10.1021/ja711187e

URL : https://hal.archives-ouvertes.fr/hal-01481520

A. Kubas, C. Orain, D. De-sancho, L. Saujet, M. Sensi et al., Mechanism of O 2 diffusion and reduction in FeFe hydrogenases This article is an illustration of the power of combining kinetic techniques from PFV and theoretical chemistry approaches, here to elucidate all steps in the reaction of O 2 with FeFe hydrogenases, Nat. Chem, vol.9, pp.88-95, 2017.

C. Baffert, K. Sybirna, P. Ezanno, T. Lautier, V. Hajj et al., Covalent Attachment of FeFe Hydrogenases to Carbon Electrodes for Direct Electron Transfer, Analytical Chemistry, vol.84, issue.18, pp.7999-8005, 2012.
DOI : 10.1021/ac301812s

URL : https://hal.archives-ouvertes.fr/hal-01268277

A. Adamska, A. Silakov, C. Lambertz, O. Rüdiger, T. Happe et al., Identification and Characterization of the ???Super-Reduced??? State of the H-Cluster in [FeFe] Hydrogenase: A New Building Block for the Catalytic Cycle?, Angewandte Chemie International Edition, vol.214, issue.46
DOI : 10.1016/j.jmr.2011.11.011

C. Orain, L. Saujet, C. Gauquelin, P. Soucaille, I. Meynial-salles et al., Demonstrate That the Reaction Is Partly Reversible, Journal of the American Chemical Society, vol.137, issue.39, pp.12580-12587, 2015.
DOI : 10.1021/jacs.5b06934

URL : https://hal.archives-ouvertes.fr/hal-01211469

K. A. Brown, M. B. Wilker, M. Boehm, G. Dukovic, and P. W. King, Production by CdS Nanorod???[FeFe] Hydrogenase Complexes, Journal of the American Chemical Society, vol.134, issue.12, pp.5627-5636, 2012.
DOI : 10.1021/ja2116348

J. K. Utterback, M. B. Wilker, K. A. Brown, P. W. King, J. D. Eaves et al., Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes., Physical chemistry chemical physics, pp.17-5538, 2015.

M. B. Wilker, K. E. Shinopoulos, K. A. Brown, D. W. Mulder, P. W. King et al., Generation, Journal of the American Chemical Society, vol.136, issue.11, pp.4316-432410, 1021.
DOI : 10.1021/ja413001p

K. A. Brown, S. Dayal, X. Ai, G. Rumbles, and P. W. King, Controlled Assembly of Hydrogenase-CdTe Nanocrystal Hybrids for Solar Hydrogen Production, Journal of the American Chemical Society, vol.132, issue.28
DOI : 10.1021/ja101031r

K. A. Brown, Q. Song, D. W. Mulder, and P. W. King, Diameter Dependent Electron Transfer Kinetics in Semiconductor???Enzyme Complexes, ACS Nano, vol.8, issue.10, pp.10790-10798, 2014.
DOI : 10.1021/nn504561v

Y. Zhao, N. C. Anderson, M. W. Ratzloff, D. W. Mulder, K. Zhu et al., Proton Reduction Using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode, ACS Applied Materials & Interfaces, vol.8, issue.23, pp.14481-14487, 2016.
DOI : 10.1021/acsami.6b00189

S. Morra, F. Valetti, V. Sarasso, S. Castrignanò, S. J. Sadeghi et al., Hydrogen production at high Faradaic efficiency by a bio-electrode based on TiO2 adsorption of a new [FeFe]-hydrogenase from Clostridium perfringens, Bioelectrochemistry, vol.106, pp.258-262, 2015.
DOI : 10.1016/j.bioelechem.2015.08.001

H. Krassen, S. Stripp, G. Von-abendroth, K. Ataka, T. Happe et al., Immobilization of the [FeFe]-hydrogenase CrHydA1 on a gold electrode: Design of a catalytic surface for the production of molecular hydrogen, Journal of Biotechnology, vol.142, issue.1, 2009.
DOI : 10.1016/j.jbiotec.2009.01.018

C. Baffert, L. Bertini, T. Lautier, C. Greco, K. Sybirna et al., CO Disrupts the Reduced H-Cluster of FeFe Hydrogenase. A Combined DFT and Protein Film Voltammetry Study, Journal of the American Chemical Society, vol.133, issue.7, pp.133-2096, 1021.
DOI : 10.1021/ja110627b

URL : https://hal.archives-ouvertes.fr/hal-00677449

J. N. Butt, M. Filipiak, and W. R. Hagen, Direct Electrochemistry of Megasphaera Elsdenii Iron Hydrogenase. Definition of the Enzyme's Catalytic Operating Potential and Quantitation of the Catalytic Behaviour over a Continuous Potential Range, European Journal of Biochemistry, vol.30, issue.1, 1997.
DOI : 10.1021/ja952489f

M. Sensi, C. Baffert, C. Greco, G. Caserta, C. Gauquelin et al., Reactivity of the Excited States of the H-Cluster of FeFe Hydrogenases, Journal of the American Chemical Society, vol.138, issue.41, pp.13612-13618, 2016.
DOI : 10.1021/jacs.6b06603

URL : https://hal.archives-ouvertes.fr/hal-01400732

P. Ceccaldi, K. Schuchmann, V. Muller, and S. J. Elliott, reductase: the first completely CO tolerant FeFe-hydrogenase, Energy & Environmental Science, vol.137, issue.2
DOI : 10.1021/jacs.5b01194

C. Blanford and F. Armstrong, The pyrolytic graphite surface as an enzyme substrate: microscopic and spectroscopic studies, Journal of Solid State Electrochemistry, vol.109, issue.10, pp.826-832, 2006.
DOI : 10.1007/s10008-006-0183-2

J. C. Fontecilla-camps, A. Volbeda, C. Cavazza, and Y. Nicolet, Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases, Chemical Reviews, vol.107, issue.10, pp.4273-4303, 2007.
DOI : 10.1021/cr050195z

E. Lojou, Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces, Electrochimica Acta, vol.56, issue.28, pp.10385-10397, 2011.
DOI : 10.1016/j.electacta.2011.03.002

URL : https://hal.archives-ouvertes.fr/hal-00677206

P. W. King, Designing interfaces of hydrogenase???nanomaterial hybrids for efficient solar conversion, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.8-9, pp.949-957, 2013.
DOI : 10.1016/j.bbabio.2013.03.006

P. O. Saboe, E. Conte, M. Farell, G. C. Bazan, and M. Kumar, Biomimetic and bioinspired approaches for wiring enzymes to electrode interfaces, Energy & Environmental Science, vol.2, issue.1, pp.14-42, 2017.
DOI : 10.1016/0265-928X(86)80011-6

V. Radu, S. Frielingsdorf, O. Lenz, and L. J. Jeuken, Reactivation from the Ni???B state in [NiFe] hydrogenase of Ralstonia eutropha is controlled by reduction of the superoxidised proximal cluster, Chemical Communications, vol.10, issue.12, pp.52-2016, 510382.
DOI : 10.1007/s00775-005-0632-x

L. J. Jeuken, Structure and modification of electrode materials for protein electrochemistry Advances in biochemical engineering, biotechnology, pp.10-1007, 2016.

J. Esselborn, C. Lambertz, A. Adamska-venkatesh, T. Simmons, G. Berggren et al., Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic, Nature Chemical Biology, vol.9, issue.10, pp.607-609, 2013.
DOI : 10.1016/j.jmr.2011.11.011

URL : https://hal.archives-ouvertes.fr/hal-01069155

N. Khanna, C. Esmieu, L. S. Meszaros, P. Lindblad, and G. Berggren, In vivo activation of an [FeFe] hydrogenase using synthetic cofactors, Energy & Environmental Science, vol.45, issue.7, 2017.
DOI : 10.1039/C6DT02061E

C. F. Megarity, J. Esselborn, S. V. Hexter, F. Wittkamp, U. Apfel et al., Electrochemical Investigations of the Mechanism of Assembly of the Active-Site H-Cluster of [FeFe]-Hydrogenases, Journal of the American Chemical Society, vol.138, issue.46, 2016.
DOI : 10.1021/jacs.6b09366

L. Zhang, R. Miranda-castro, C. Stines-chaumeil, N. Mano, G. Xu et al., Heterogeneous Reconstitution of the PQQ-Dependent Glucose Dehydrogenase Immobilized on an Electrode: A Sensitive Strategy for PQQ Detection Down to Picomolar Levels, Analytical Chemistry, vol.86, issue.4, pp.2257-2267, 2014.
DOI : 10.1021/ac500142e

URL : https://hal.archives-ouvertes.fr/hal-00949134

C. Léger, A. K. Jones, S. P. Albracht, and F. A. Armstrong, Effect of a Dispersion of Interfacial Electron Transfer Rates on Steady State Catalytic Electron Transport in [NiFe]-hydrogenase and Other Enzymes, The Journal of Physical Chemistry B, vol.106, issue.50, pp.13058-1306310, 1021.
DOI : 10.1021/jp0265687

C. Léger, S. Dementin, P. Bertrand, M. Rousset, and B. Guigliarelli, NiFe Hydrogenase Studied by Protein Film Voltammetry, Journal of the American Chemical Society, vol.126, issue.38, pp.12162-12172, 2004.
DOI : 10.1021/ja046548d

V. Hajj, C. Baffert, K. Sybirna, I. Meynial-salles, P. Soucaille et al., FeFe hydrogenase reductive inactivation and implication for catalysis, Energy Environ. Sci., vol.6, issue.2, pp.715-719, 2014.
DOI : 10.1039/c3ee00043e

URL : https://hal.archives-ouvertes.fr/hal-01481475

V. Fourmond, C. Baffert, K. Sybirna, T. Lautier, A. Abou-hamdan et al., Steady-State Catalytic Wave-Shapes for 2-Electron Reversible Electrocatalysts and Enzymes, Journal of the American Chemical Society, vol.135, issue.10, pp.3926-393810, 1021.
DOI : 10.1021/ja311607s

URL : https://hal.archives-ouvertes.fr/hal-01268145

V. Fourmond and C. Léger, Modelling the voltammetry of adsorbed enzymes and molecular catalysts Comprehensive description of all models proposed to quantitatively interpret the voltammetry of adsorbed enzymes, Curr. Op. Electrochem, vol.1, 2017.

A. Cornish-bowden and J. Wiley, Fundamentals of enzyme kinetics ?? A rare textbook to debunk the idea that catalysts must work both ways: " some enzymes are much more effective catalysts for one direction than the other, [although] even after a thorough discussion of this type of behavior [in the 1970's] many biochemists remain rather uneasy about it, suspecting that it may violate the laws of thermodynamics, 2014.

S. Gentil, N. Lalaoui, A. Dutta, Y. Nedellec, S. Cosnier et al., Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells, Angewandte Chemie, vol.42, issue.7, pp.1871-1875, 2017.
DOI : 10.1016/j.elecom.2014.02.012

URL : https://hal.archives-ouvertes.fr/hal-01446868

P. Raleiras, N. Khanna, H. Miranda, L. S. Meszaros, H. Krassen et al., Turning around the electron flow in an uptake hydrogenase. EPR spectroscopy and in vivo activity of a designed mutant in HupSL from Nostoc punctiforme, Energy & Environmental Science, vol.128, issue.2, pp.581-594, 2016.
DOI : 10.1021/ja055275z

C. Léger and P. Bertrand, Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies, Chemical Reviews, vol.108, issue.7, pp.2379-2438, 2008.
DOI : 10.1021/cr0680742

V. Fourmond, C. Baffert, K. Sybirna, S. Dementin, A. Abou-hamdan et al., The mechanism of inhibition by H 2 of H 2 -evolution by hydrogenases, Chem. Commun, pp.49-6840, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268212

S. V. Hexter, F. Grey, T. Happe, V. Climent, and F. A. Armstrong, Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases, Proc. Natl. Acad. Sc. USA, pp.11516-11521, 2012.
DOI : 10.1021/ac8025702

B. J. Murphy, F. Sargent, and F. A. Armstrong, Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient

C. Léger, F. Lederer, B. Guigliarelli, and P. Bertrand, Electron Flow in Multicenter Enzymes:?? Theory, Applications, and Consequences on the Natural Design of Redox Chains, Journal of the American Chemical Society, vol.128, issue.1, pp.180-187, 2006.
DOI : 10.1021/ja055275z

L. A. Flanagan and A. Parkin, Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases, Biochemical Society Transactions, vol.44, issue.1, pp.315-328, 2016.
DOI : 10.1042/BST20150201

S. Dementin, F. Leroux, L. Cournac, A. L. Lacey, A. Volbeda et al., Fontecilla-Camps, M. Rousset, Introduction of methionines in the gas channel makes [NiFe] hydrogenase Aero-Tolerant, J. Am. Chem. Soc, pp.131-10156, 1021.

P. Liebgott, A. L. De-lacey, B. Burlat, L. Cournac, P. Richaud et al., Original Design of an Oxygen-Tolerant [NiFe] Hydrogenase: Major Effect of a Valine-to-Cysteine Mutation near the Active Site, Journal of the American Chemical Society, vol.133, issue.4, pp.133-986, 1021.
DOI : 10.1021/ja108787s

URL : https://hal.archives-ouvertes.fr/hal-00677415

A. Abou-hamdan, S. Dementin, P. Liebgott, O. Gutierrez-sanz, P. Richaud et al., Understanding and Tuning the Catalytic Bias of Hydrogenase, Journal of the American Chemical Society, vol.134, issue.20, pp.8368-837110, 1021.
DOI : 10.1021/ja301802r

D. Lacey, V. M. Fernandez, M. Rousset, and C. Léger, Changing the ligation of the distal [4Fe4S] cluster in NiFe hydrogenase impairs inter-and intramolecular electron transfers, J. Am. Chem. Soc, vol.128, pp.5209-5218, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00335157

L. A. Flanagan, J. J. Wright, M. M. Roessler, J. W. Moir, and A. Parkin, Reengineering a NiFe hydrogenase to increase the H 2 production bias while maintaining native levels of O 2 tolerance, Chem. Commun, pp.52-9133, 2016.

H. Adamson, M. Robinson, J. J. Wright, L. A. Flanagan, J. Walton et al., Re-tuning the catalytic bias and overpotential of a [NiFe]-hydrogenase via a single amino acid exchange at the electron entry/exit site, J. Am. Chem. Soc, 2017.

A. K. Jones, S. E. Lamle, H. R. Pershad, K. A. Vincent, S. P. Albracht et al., [NiFe]-hydrogenase, Journal of the American Chemical Society, vol.125, issue.28, pp.8505-8514, 2003.
DOI : 10.1021/ja035296y

C. Greco, V. Fourmond, C. Baffert, P. Wang, S. Dementin et al., Combining experimental and theoretical methods to learn about the reactivity of gas-processing metalloenzymes, Energy Environ. Sci., vol.108, issue.11, pp.3543-357310, 1039.
DOI : 10.1021/jp0366015

URL : https://hal.archives-ouvertes.fr/hal-01211585

K. Chen, J. Hirst, R. Camba, C. A. Bonagura, C. D. Stout et al., Atomically defined mechanism for proton transfer to a buried redox centre in a protein, Nature, vol.107, issue.6788, pp.814-81710, 1038.
DOI : 10.1021/ja00298a004

A. F. Wait, C. Brandmayr, S. T. Stripp, C. Cavazza, J. C. Fontecilla-camps et al., Formaldehyde???A Rapid and Reversible Inhibitor of Hydrogen Production by [FeFe]-Hydrogenases, Journal of the American Chemical Society, vol.133, issue.5, pp.1282-128510, 1021.
DOI : 10.1021/ja110103p

C. E. Foster, T. Krämer, A. F. Wait, A. Parkin, D. P. Jennings et al., Inhibition of [FeFe]-Hydrogenases by Formaldehyde and Wider Mechanistic Implications for Biohydrogen Activation, Journal of the American Chemical Society, vol.134, issue.17, pp.7553-755710, 1021.
DOI : 10.1021/ja302096r

A. Bachmeier, J. Esselborn, S. V. Hexter, T. Krämer, K. Klein et al., C ENDOR of Direct Fe???C Coordination and Order of Electron and Proton Transfers, Journal of the American Chemical Society, vol.137, issue.16, pp.5381-538910, 1021.
DOI : 10.1021/ja513074m

F. Leroux, S. Dementin, B. Burlat, L. Cournac, A. Volbeda et al., Experimental approaches to kinetics of gas diffusion in hydrogenase, Proc. Natl. Acad. Sc. USA 105, pp.11188-11193, 2008.
DOI : 10.1107/S0907444996012255

URL : https://hal.archives-ouvertes.fr/hal-00336010

P. Wang and J. Blumberger, Mechanistic insight into the blocking of CO diffusion in [NiFe]-hydrogenase mutants through multiscale simulation, Proceedings of the National Academy of Sciences, vol.91, issue.10, pp.6399-6404, 2012.
DOI : 10.1021/j100308a038

D. Millo, P. Hildebrandt, M. Pandelia, W. Lubitz, and I. Zebger, SEIRA Spectroscopy of the Electrochemical Activation of an Immobilized [NiFe] Hydrogenase under Turnover and Non-Turnover Conditions, Angewandte Chemie International Edition, vol.363, issue.11, pp.2632-2634, 2011.
DOI : 10.1098/rsta.2004.1528

M. Sezer, D. Millo, I. M. Weidinger, I. Zebger, and P. Hildebrandt, Analyzing the catalytic processes of immobilized redox enzymes by vibrational spectroscopies, IUBMB Life, vol.50, issue.6, pp.455-464, 2012.
DOI : 10.1002/anie.201006046

P. A. Ash, R. Hidalgo, and K. A. Vincent, Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy, ACS Catalysis, vol.7, issue.4, pp.2471-2485, 2017.
DOI : 10.1021/acscatal.6b03182

B. J. Murphy, R. Hidalgo, M. M. Roessler, R. M. Evans, P. A. Ash et al., Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate, Journal of the American Chemical Society, vol.137, issue.26, pp.8484-8489, 2015.
DOI : 10.1021/jacs.5b03182

P. A. Ash, J. Liu, N. Coutard, N. Heidary, M. Horch et al., and CO, The Journal of Physical Chemistry B, vol.119, issue.43, pp.13807-13815, 2015.
DOI : 10.1021/acs.jpcb.5b04164

URL : https://hal.archives-ouvertes.fr/hal-01179268

W. Roseboom, A. De-lacey, V. Fernandez, S. Hatchikian, and . Albracht, The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy, JBIC Journal of Biological Inorganic Chemistry, vol.68, issue.1, pp.102-118, 2006.
DOI : 10.1016/0167-4838(85)90175-X

P. Rodríguez-maciá, J. A. Birrell, W. Lubitz, and O. Rüdiger, or Light under Hydrogen-Producing Conditions, ChemPlusChem, vol.127, issue.4, pp.540-545, 2017.
DOI : 10.1002/ange.201502364

A. Ciaccafava, C. Hamon, P. Infossi, V. Marchi, M. Giudici-orticoni et al., Light-induced reactivation of O2-tolerant membrane-bound [Ni???Fe] hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus under turnover conditions, Physical Chemistry Chemical Physics, vol.1797, issue.39, pp.16463-16467, 2013.
DOI : 10.1016/j.bbabio.2009.11.002

URL : https://hal.archives-ouvertes.fr/hal-00860457

M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore et al., Biology and technology for photochemical fuel production, Chem. Soc. Rev., vol.433, issue.1, pp.25-35, 2009.
DOI : 10.1038/433820a

E. Reisner, Solar Hydrogen Evolution with Hydrogenases: From Natural to Hybrid Systems, European Journal of Inorganic Chemistry, vol.326, issue.7, pp.2011-1005, 2011.
DOI : 10.1126/science.1179773

T. W. Woolerton, S. Sheard, Y. S. Chaudhary, and F. A. Armstrong, Enzymes and bio-inspired electrocatalysts in solar fuel devices, Energy & Environmental Science, vol.334, issue.6, pp.7470-7490, 2012.
DOI : 10.1126/science.1209816

H. A. Reeve, P. A. Ash, H. Park, A. Huang, M. Posidias et al., Enzymes as modular catalysts for redox half-reactions in H 2 -powered chemical synthesis: from biology to technology A very recent review that describes the applications of hydrogenases. See also refs, Biochemical Journal, vol.47477, pp.125-127, 2017.