Direct Electrochemistry of Molybdenum and Tungsten Enzymes
Vincent Fourmond

To cite this version:

HAL Id: hal-01614270
https://hal-amu.archives-ouvertes.fr/hal-01614270
Submitted on 3 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Direct electrochemistry of molybdenum and tungsten enzymes

Vincent Fourmond

Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier; F-13402 Marseille cedex 20, France

Abstract

Molybdenum and tungsten enzymes are almost omnipresent in living organisms; they catalyze a large variety of reactions on a large range of substrates, and are involved in a number of key cellular functions, like bacterial respiration, biological carbon, sulfur, and nitrogen cycles, detoxification. Most of these enzymes catalyze redox reactions, and they have successfully been connected to electrodes, in order to build biotechnological devices like biosensors or biofuel cells, but also to learn about their catalytic properties, using protein film voltammetry, in which the electron transfer is direct and the enzymatic activity can be monitored as an electrical current. This chapter is an exhaustive review of the uses of direct electrochemistry for the study of molybdenum and tungsten enzymes.

Keywords: molybdenum enzymes; tungsten enzymes; direct electrochemistry; protein film voltammetry; nitrate reductase; sulfite oxidase

1. Introduction

For key reactions in their metabolism, living organisms use a number of transition metals, incorporated into metalloproteins. Among them, the only elements that do not belong to the first row are molybdenum and tungsten. These metals are used for the active site of nitrogenase, that catalyzes the reduction of N$_2$ to NH$_3$ at a complex MoFe$_7$S$_9$ active site[1, 2], and are also incorporated in a series of recently discovered proteins of unknown function[3, 4]. Mostly, however, molybdenum and tungsten ions in metalloproteins are coordinated by one or two dithiolenes moieties from a pyranopterin-dithiolene ligand called “molybdopterin” (figure 1a). Enzymes incorporating such active sites are grouped in a large superfamily called mononuclear Mo (or W) enzymes[5, 6], because, with only one notable exception, the Mo or W ion is the only metal at the active site. This review focuses on enzymes of this superfamily; they will be referred to henceforth as “molybdoenzymes”, regardless of the actual metal in the active site (Mo or W).

The molybdopterin cofactor in molybdoenzymes comes in several forms, either unmodified (in eukaryotes), or bound to a cytosine (pterin cytosine dinucleotide, PCD) or a guanosine (pterin guanosine dinucleotide, PGD), which are the forms of the cofactor used in prokaryotes. Phylogenetic data trace the ancestry of molybdoenzymes back to the last universal common ancestor[7], which suggest that they played an important role in the origin of life; however, which of molybdenum or tungsten was first used by organisms is still a matter of debate[8, 7].

Molybdoenzymes are able to process a large range of substrates. The reactions catalyzed are mostly (i) oxygen atom transfers[9], RH + H$_2$O \rightleftharpoons ROH + 2 H$^+$ + 2 e$^-$, like the reduction of nitrate, chloride, selenate, and of N and S oxides

\[\text{Figure 1: a. molybdopterin moiety (R can be H, guanosine dinucleotide, or cytosine dinucleotide). Active sites of b. Mo-W-bisPGD family (X is O or S, Y is Ser, Cys, SeCys or Asp), c. xanthine oxidase family, and d. sulfite oxidase family.} \]
Figure 2: Small subset of the redox reactions catalyzed by molybdoenzymes, plotted on a potential scale (horizontal). The arrows indicate the direction of the reaction (oxidation or reduction); bidirectional arrows signify that a single enzyme catalyzes both the reduction and the oxidation. The potentials are taken from the list compiled in ref 11.

like DMSO, trimethylamine N-oxide (TMAO), biotin sulfoxide, and methionin sulfoxide, the oxidation of sulfite, arsenite, etc., and (ii) sulfur atom transfers, like the reduction of polysulfide or of thiosulfate. They also catalyze other reactions, like the reversible oxidation of formate to CO$_2$, some hydroxilations (like that of ethylbenzene), and even non-redox reactions, like the hydration of acetylene[10]. A representative subset of the redox reactions catalyzed by molybdoenzymes are shown as a function of the reduction potential of the substrate in figure 2, which shows that molybdoenzymes are able to catalyze reactions spanning well over a volt.

The large range of reactions of molybdoenzymes is probably why they are used by almost all living organisms[12], for functions as diverse as the energetic metabolism, the assimilation of nitrogen (via the uptake of nitrate), the catabolism of purines and of sulfur-based amino acids, the detoxification of arsenite or selenate, the assimilation of carbon... As an example, molybdenum cofactor deficiency in humans causes severe brain atrophy in newborn children, resulting in early death[13].

In the course of the catalytic reactions, the Mo and W ions are thought to cycle between the IV and VI redox states, potentially passing through an intermediate Mo(V) or W(V) state. These paramagnetic (V) states have been the subject of intense scrutiny with EPR spectroscopy to learn about the structure of the active site of many molybdoenzymes[11, 14, 15].

Molybdoenzymes are further divided into three subfamilies based on the structure of their oxidized active site (figure 1). In the Mo/W-bisPGD subfamily[11], exclusively found in prokaryotes, the Mo or W ion is coordinated by four sulfurs from two molybdopterins, a proteic ligand (in most of the members) and a sixth ligand, either an oxo or a sulfido group. The proteic ligand is either a serine, a cysteine (or selenocysteine), or an aspartate (figure 1b). The xanthine oxidase subfamily is characterized by a pentacoordinated Mo ion, with the two sulfides from a single dithiolene, equatorial sulfido and hydroxo and an apical oxo ligands (figure 1c). Finally, enzymes of the sulfite oxidase subfamily are characterized by a pentacoordinate geometry like in xanthine oxidase, with, in addition to the dithiolene ligand, an equatorial and an apical oxo ligand, and the thiolate of a cystein (figure 1d).

In addition to variations in the structure of their active site, molybdoenzymes host a great variety of other cofactors, like regular 4Fe4S, 3Fe4S, and 2Fe2S clusters, Rieske-type 2Fe2S clusters, hemes, etc. This diversity is exemplified by the structures shown in figure 3.

One of the most puzzling questions regarding molybdoenzymes is the relation between structure and function within the family, or rather the apparent lack thereof. For instance, periplasmic nitrate reductases and polysulfide reductases share the same active site: Mo-bisPGD with cystein as proteic ligand and sulfide as the sixth ligand, but they catalyze completely different reactions: the transfer of an oxygen atom for one, and that of a sulfur atom for the other. On the other hand, the reduction of nitrate is catalyzed by three very different molybdoenzymes: periplasmic nitrate reductases, respiratory nitrate reductases (which have an aspartate instead of the cystein as proteic ligand), and plant-type nitrate reductases, which are members...
of the sulfite oxidase family, with only one molybdoenzyme in the coordination sphere of the molybdenum.

Besides, the specificity of substrate varies greatly among members of this family, with enzymes that process only a single substrate, while others can work with different substrates with almost the same rate; the respiratory nitrate reductase NarGH is for instance able to reduce both nitrate and chlorate with similar activities and values of K_m.

The broad range of substrates of the molybdenum enzymes has attracted the interest of electrochemists who wish to tap into this large variety of reactions for analytic purposes[21], or for the construction of biofuel cells or devices for decontamination of water.

In this review, we focus on the electrochemistry of molybdenum enzymes, and in particular on direct electrochemistry. In this technique, an enzyme is immobilized on an electrode in a configuration in which electron transfer is direct and fast between the electrode and the enzyme (figure 4), and the main purpose of the experiments is not to use the enzyme, but rather to learn about it[22–24]. We refer the reader to other reviews focussing on other aspects of the electrochemistry of molybdenum enzymes[25, 21].

This review is organized in two parts. The first is an exhaustive review of the direct electrochemistry of molybdenum enzymes, system-by-system, while the second discusses specific topics addressed using protein film voltammetry across several systems.

2. Electrochemistry of molybdenum enzymes

2.1. Respiratory nitrate reductase

Respiratory nitrate reductases are members of the Mo/W bis-PGD subfamily; they are involved in anaerobic respiration using nitrate as the final electron acceptor, oxidizing quinols within the bacterial membrane; in E. coli, they are combined with respiratory formate dehydrogenases to form a redox loop and translocate protons across the cytoplasmic membrane[26]. E. coli respiratory nitrate reductase NarGHI is composed of three subunits (figure 3e): NarG (blue, top), which contains the molybdenum cofactor and a 4Fe4S cluster; NarH (green, middle), which contains four additional iron-sulfur clusters, and a NarI (purple, bottom), a membrane-anchored subunit that contains two hemes. NarG is the location of the reduction of nitrate, while the hemes in NarI oxidize quinols. The quinol oxidation site is versatile and able to work with several types of quinols of different reduction potentials[27]. The molybdenum ion in the active site is coordinated by the four sulfurs of the two molybdoenzymes, and an aspartate protein ligand. The two subunits NarGH can be isolated independently of NarI to yield an enzyme that keeps its nitrate reduction activity, but has lost its ability to oxidize quinols. Most of the electrochemical studies of the respiratory nitrate reductase were performed on the NarGH subcomplex. In addition to nitrate, NarGH is able to reduce chlorate with slightly higher K_m and k_{cat} values, and also other substrates with lower activities.

The first molybdoenzyme ever studied using protein film voltammetry is Paracoccus pantotrophus (Pp) NarGHI[28]. Anderson and coworkers characterized the dependence of the catalytic current (hence of the catalytic rate) on potential, nitrate concentration and pH, and quickly discovered that the enzymatic activity does not increase monotonously upon increasing the driving force (decreasing the potential), but that, in certain concentration ranges, Pp NarGH has a maximum of activity at intermediate potentials, and that decreasing the potential decreases the activity[29]. Elliott and coworkers demonstrated that these features are not specific to Pp NarGH, but that they are also visible in E. coli NarGH[30]. In fact, the wave shape is even more complex (figure 5a), with the presence of a peak at low concentrations of nitrate whose amplitudes saturates at lower concentrations than the low-potential plateau, giving complicated shapes in which the activity peaks, decreases and then increases again as the potential decreases (figure 5a, 125 µM). Maragon and coworkers also obtained complex waves with Marinobacter hydrocarbonoclasticus 617 NarGH, but did not observe peaks at intermediate potentials, only pronounced shoulders[31]. They recorded voltammograms in the presence of the alternative substrates chlorate and perchlorate, and showed that the wave shapes are very similar for all substrates, and that the positions of the features depend only slightly on the nature of the substrate and on its concentration[31].

Field and coworkers discovered that, under some conditions Pp NarGH activates the first time it is reduced[32], which could be observed by a very pronounced hysteresis in the first cyclic voltammogram, provided it was performed in the presence of nitrate. Ceccaldi and coworkers showed that this activation is also present in E. coli NarGHI films, and that it proceeds in two steps: a reversible reaction involving neither electrons nor protons, followed by an irreversible reduction[33]. This activation had no effect on the spectroscopic signatures of the sample[33].

Respiratory nitrate reductases have been successfully immo-
bilized on graphite particles, and coupled to hydrogenases[34], to catalyze the oxidation of H₂ by nitrate, or combined with platinum or rhodium nanoparticles to catalyze the reduction of nitrate to ammonium[35].

2.2. Dissimilatory nitrate reductase

Another series of enzymes from the Mo/W bis-PGD family catalyze the reduction of nitrate to nitrite. They differ from the respiratory nitrate reductases in terms of overall architecture, active site coordination and physiological role. The archetypical dissimilatory nitrate reductase, *Rhodobacter sphaeroides* (Rs) NapAB, is composed of two subunits: NapA, that contains the molybdenum cofactor and a 4Fe4S cluster, and NapB, that contains two hemes[19] (figure 3d). In NapAB, the proteic ligand to the molybdenum is a cystein. The nature of the 6th ligand has long been a matter of debate, but it seems likely that the main EPR signatures of the enzymes correspond to structures in which the coordination sphere of the Mo ion is completed by a sulfide[43, 44]. However, whether these signatures are related to the active species is still an open question. Their physiological role is to dissipate excess in reducing power, to balance the redox potential of the quinone pool[45]. They are closely related to the bacterial assimilatory nitrate reductases, that have the same structural features, and whose role is to catalyze the first step in the assimilation of nitrate[45].

The first enzyme of this family to be immobilized on an electrode was the assimilatory nitrate reductase NarB from *Synechococcus* sp. PCC 7942. Butt and coworkers observed that much more reducing potentials are required to elicit catalysis from NarB than from NarGH, and proposed that this reflects differences in the source of electrons: quinones for NarGH vs ferredoxins for NarB[46, 47].

The dissimilatory nitrate reductase that has been studied the most using protein film voltammetry is *Rs* NapAB; it was observed early on that the nitrate reduction current generated by films of *Rs* NapAB shows a very pronounced optimum in an intermediate range of potential, and a plateau with lower activity at low potentials[36] (figure 5b). Frangioni and coworkers proposed a model in which the binding of nitrate to the active site is faster in the Mo(V) state than in the Mo(IV) state, and were able to quantitatively reproduce the experimental data[36]. This model was later extended by Bertrand and coworkers[48].

This marked optimum of potential is also present in *P. pantotrophus* NapAB[49], but is not visible when *Pp* NapAB reduces selenate rather than nitrate[50]. The shape of the voltamograms is visibly modified by the presence of azide[48, 49], or the introduction of point mutations in the environment of the active site[51], but the reasons for the change have not been elucidated yet. It has also been shown that the Michaelis constants depend strongly on potential[36, 52].

Both *Synechococcus* NarB[32] and *Rs* NapAB[53] activate the first time they are reduced. By a combination of PFV and EPR spectroscopy, it was shown that the species that activates gives the so called “high-g resting” EPR signature[53]; Jacques and coworkers showed that the chemical change occurs on the electronic path between the 4Fe4S cluster and the Mo, which point towards the involvement of the pterin in the activation process[54].

In addition to this first activation, *Rs* NapAB is reversibly inactivated under conditions of high potentials, low pH and high concentrations of nitrate[55]. Jacques and coworkers studied the kinetics of the formation of the inactive species, and concluded that the inactive species accumulate significantly, but probably not under paramagnetic redox states[56].

2.3. Formate dehydrogenases

Formate dehydrogenases catalyze the reversible oxidation of formate to carbon dioxide. They are closely related to dissimilatory nitrate reductases, with a selenocysteine in place of the cysteine ligand, and they most probably also have a sulfide as the 6th ligand to their active site. Thomé and coworkers showed that sulfuration of the soluble formate dehydrogenase FdhF from *E. coli*, either using exogenous sulfide or a dedicated sulfur transferase, was required for its activity[57]. Only two formate dehydrogenases were successfully connected to electrodes so far: the respiratory formate dehydrogenase FdhF from *Syntrophobacter fumaroxidans*, with a tungsten cofactor[58], and *E. coli* FdhF[37], which is part of the large hydrogen-formate lyase complex[59].

In both cases, the catalysis is fully reversible, with no over-potential in both directions. Reda and coworkers took advantage of this possibility to map the reduction potential of the CO₂/formate couple as a function of pH[58]. The wave shape of both FdhFs is simple, almost sigmoidal (figure 4e), and reminiscent of the ones observed with hydrogenases[60].

2.4. Sulfite oxidase and sulfite dehydrogenases

Sulfite oxidases, of course, compose the bulk of the “sulfite oxidase family”; they catalyze the oxidation of sulfite to sulfate. Eukaryotic sulfite oxidases are structured as a homodimer, and contain a heme in addition to the molybdenum cofactor. The first structure of chicken liver sulfite oxidase (figure 3a), lead to the puzzling remark that the heme cofactor is too far from the molybdenum (more than 30 Å) for direct electron transfer[16]. This lead to the proposal that the heme domain may exist in two conformations, an “open” conformation (the one crystallized), in which intramolecular electron transfer is not possible, but presumably the heme can interact with the redox partner, and a “closed” conformation in which the heme comes closer and intramolecular electron transfer is possible. Under this hypothesis, conformational changes would be necessary to evacuate the electrons from the active site. Support for this hypothesis came from flash photolysis experiments that showed that the intramolecular electron transfer rate is dependent on the solution viscosity, which suggests it is gated by a conformational change[61].

Elliot and coworkers were the first to wire sulfite oxidase (from chicken liver) to electrodes[38]. Sulfite oxidase gives “non-catalytic” (or “non-turnover”) signals, which correspond to the exchange of electrons with the enzyme’s redox cofactors, even in the absence of catalysis (inset of figure 5d). These signals inform on the reduction potential of the cofactors, and also
on the concentration of electroactive species at the electrode. This is important, since it makes it possible to determine absolute values of the turnover frequency on the electrode. In the case of sulfite oxidase, only the heme cofactor gives non-turnover signals, the Mo active site was never detected. In the presence of sulfite, a sigmoidal catalytic sulfite oxidation signal is observed (figure 4d), which corresponds to a turnover rate 20 times lower than that of the enzyme in solution, which lead Elliott and coworkers to the conclusion that most of the enzymes are locked in an inactive configuration in which the hemes are connected to the electrode, but never to the active site[38]. Ferapontova and coworkers used alkanethiol-modified gold electrodes, and studied the effect of the nature of the thiol on the catalytic current. They were able to obtain turnover rates nearly an order of magnitude higher than Elliott and coworkers, but still significantly lower that the values in solution[62].

Sezer and coworkers successfully immobilized human sulfite oxidase on thiol-modified silver electrode[63]. They obtained signals similar to those obtained for chicken sulfite oxidase, and were able to perform surface-enhanced Raman spectroscopy to detect the signals of the heme and titrate it[63]. They showed that the immobilization does not affect the heme’s Raman signature, suggesting that the enzyme maintains its structural integrity on the electrode. Frasca and coworkers used a similar strategy to immobilize human sulfite oxidase on gold nanoparticles; they showed that this electrode has potential for applications in biosensors[64]. Zeng and coworkers were able to further improve this assembly by fine-tuning the coating of the nanoparticles, leading to improved rates of interfacial electron transfer between the heme and the electrode[65]. They also explored the possibility of making a sulfite/oxygen fuel cell using nanostructured gold electrodes[66], and wiring sulfite oxidase to quantum-dots modified indium tin oxide electrodes, in order to catalyze the photo-oxidation of sulfite[67]; a similar configuration was also recently used by Saengdee and coworkers to develop a sulfite biosensor[68].

Sulfite dehydrogenases are prokaryotic members of the sulfite oxidase family that catalyze the oxidation of sulfite to sulfate. They also contain a heme active site, but the overall fold is different from that of eukaryotic sulfite oxidases. Aguey-Zinsou and coworkers successfully adsorbed Starkeya novella sulfite dehydrogenase on PGE electrodes[42]; they obtained non-catalytic signals of both the heme and the molybdenum cofactors, whose potentials depended on the co-adsorbant used, and could demonstrate catalytic signals for the oxidation of sulfite[42]. Rapson and coworkers demonstrated that the catalytic wave shape of Starkeya novella sulfite dehydrogenase is not simply a sigmoid, but that it also presents a maximum in saturating concentrations of sulfite[69]. They studied the effect of active site point mutations on the shape of the voltammograms[70].

2.5. Eukaryotic nitrate reductase

Eukaryotic nitrate reductases are members of the sulfite oxidase family that reduce nitrate to nitrite as the first step in the
assimilation of nitrogen. They are found in plants and fungi, use NADH or NADPH as reducing equivalents, and harbor a heme and a FAD cofactor in addition to the molybdenum active site. Barbier and coworkers first reported sigmoidal catalytic voltammograms of reduction of nitrate from _Pichia angusta_ nitrate reductase[71]. Kalimuthu and coworkers immobilized the nitrate reductase from the fungus _Neurospora crassa_ on PGE electrodes, and could obtain non-catalytic signals of the heme and of dissociated FAD moieties, but not of the Mo center[72]. They observed catalytic reduction of nitrate, and determined the variation of the catalytic current as a function of nitrate concentration and of the pH. So far, no direct electrochemistry was reported on plant nitrate reductase; however, it should be noted that _Arabidopsis thaliana_ nitrate reductase was studied by Kalimuthu and coworkers using redox mediators[73].

2.6. DMSO reductases

DMSO reductases, which reduce DMSO to DMS, are members of the Mo/W-/hioPGD family, and are divided in two classes. DMSO reductases like that of _Rhodobacter capsulatus_ (Ec) contain only the molybdenum center as single redox cofactor (figure 3b); their role is to dissipate excess reducing power. Aguey-Zinsou immobilized _Re_ DMSO reductase and successfully obtained non-catalytic signals (figure 5e); they could determine the reduction potential of both the Mo(VI)/V and the (V)/IV couples, and demonstrated that only the first reduction is coupled to a protonation[74]. They also obtained sigmoidal catalytic signals. They used the same approach to titrate the active site in two point mutants, Y114F, which has very little effect on the thermodynamics of the active site[75], and W116F (figure 5e), which does not affect the VI/V couple much, but results in the coupling of the V/IV reduction with a protonation[39].

Membrane-bound DMSO reductases like that of _E. coli_ are much more complex, with no less than 5 iron-sulfur clusters and a quinone binding site in addition to the molybdenum cofactor. They are part of respiratory chains, similarly to NarGHI described above. Heffron and coworkers were the first to study them using protein film voltammetry; the catalytic wave of reduction of DMSO has a very marked optimum of potential (figure 5f), that correlates with the window of potential in which the Mo(V) EPR signal is observed, which lead to the proposition that the optimum of activity results from the Mo(V) being more reactive than Mo(IV)[40, 76, 77]. _E. coli_ DMSO reductase does not oxidize DMS, but oxidizes trimethylphosphine, with an even more marked potential optimum.

2.7. Xanthine dehydrogenase/xanthine oxidase

Xanthine oxidase/dehydrogenase oxidize xanthine to uric acid, and play a role in the degradation of purines; they oxidize a range of other substrates. They differ in whether oxygen (for xanthine oxidase) or NAD$^+$ (for xanthine dehydrogenase) is the electron acceptor. In some case, the dehydrogenase spontaneously converts to an oxidase.

Rhodobacter capsulatus xanthine dehydrogenase harbours 2 iron-sulfur clusters and a FAD, in addition to the molybdenum active site. Aguey-Zinsou and coworkers were the first to immobilize it on an electrode. They could detect non-catalytic signals in the range ~600 to ~200 mV, which they attributed to the Mo cofactor, one of the FeS cluster and the FAD[78]. They detected catalytic oxidation of xanthine, but at ~400 mV, i.e. 600 mV higher than any non-catalytic signal, and far above the reduction potential of the acceptor, NAD$^+$ (around ~300 mV). While the reason for such a discrepancy is still obscure, it is also observed in other systems, like the xanthine oxidase from bovine milk[79]. Kalimuthu and coworkers also demonstrated that electron transfer from xanthine dehydrogenase can be mediated by the product, uric acid[80].

Wu and coworkers immobilized bovine milk xanthine oxidase on single-wall carbon nanotube modified glassy carbon electrodes[81]. They could observe broad non-catalytic signals they attributed to all the cofactors, and detected catalytic currents of reduction of nitrate. Shan and coworkers immobilized xanthine oxidase using laponite nanoparticles, and were able to obtain well-defined signals attributed to the FAD cofactor, and an oxidation current in the presence of xanthine[82].

2.8. Other molybdoenzymes

Arsenate oxidases. They oxidize arsenite to arsenate. Hoke and coworkers studied _Alcaligenes faecalis_ arsenite oxidase, and detected a single cooperative two-electron non-catalytic signal they attributed to the Mo center[41]. They could also record simple, almost sigmoidal, catalytic voltammograms of oxidation of arsenite (figure 5g).

Bernhardt and Santini immobilized the arsenite oxidase of the bacterium NT-26 on graphite electrodes, and were also able to monitor catalytic oxidation of arsenite, though they could not detect non-turnover signals[83]. This enzyme was also immobilized on multi-walled carbon nanotubes, for building an arsenite biosensor[84].

YedY. _E. coli_ YedY is a member from the sulfite oxidase family. Gennaris and coworkers showed that it is involved in the defense against oxidative stress, by reducing protein-bound methionine sulfoxides[85]. Adamson and coworkers successfully wired _E. coli_ YedY to a PGE electrode, and could detect non-catalytic signals, one attributed to the Mo(V)/IV couple (Mo(VI) was never generated in solution) and one probably corresponding to a two-electron reduction of the pterin cofactor[86]: they could detect catalytic reduction of DMSO at a potential close to that of the pterin, which is the first indication that pterin ligand may play a redox role during catalysis in some molybdoenzymes[86, 87].

Alddehyde oxidoreductase. They belong to the xanthine oxidase family, and oxidize a variety of aldehydes; their physiological substrate and roles are often unknown. Correia dos Santos and coworkers were the first to report direct electrochemistry of an aldehyde oxidoreductase from _Desulfovibrio gigas_. They could detect the signatures of the iron-sulfur clusters when the enzyme is adsorbed on PGE electrodes, and that of the molybdenum center using a gold electrode and an enzyme in
solution[88]. A weak catalytic signal was observed in the presence of benzaldehyde, though, as it was a reduction current, its source is unclear.

Pinyou and coworkers successfully embedded E. coli aldehyde oxidase PaoABC within redox hydrogels, and used it as anodes in vanillin/O2 biofuel cells[89].

3. Overall topics in electrochemistry of molybdenum enzymes

3.1. Formation of films

Studying an enzyme with direct electrochemistry implies that one must be able to make electroactive films of the enzyme. Table 1 shows the strategies that were employed to obtain electroactive films in the articles described herein. Pyrolytic graphite edge electrodes are clearly the most used, often with a large variety of co-adsorbants, but gold electrodes have also been used successfully. It is hard to draw conclusions from this table: some systems seem to require a specific co-adsorbant (for instance, neomycin is required to obtain signals from dissimilatory nitrate reductases), while in some cases, the presence of a co-adsorbant is not necessary (for NarGH, for instance). Table 1 also shows that, while almost all the enzymes tested gave catalytic signals, only a small subset could give non-catalytic ones, and even less gave non-catalytic signals attributed to the Mo active site. The main purpose of table 1 is to provide inspiration for making films of not previously characterized enzymes.

3.2. Wave shapes

The dependence of the steady-state catalytic current generated by an enzyme film in the presence of its substrate is called the “wave shape”. It closely resembles the steady-state enzymatic activity that enzymologists have learn to model and interpret since the discovery of enzymes, but with a much greater control over the driving force of the reaction via the electrode potential. The catalytic current is a complicated function of the rates of all the steps in the catalytic cycle, and it can therefore theoretically be interpreted to learn about all of them, or at least those whose rate can be varied: electron transfers, protonations, substrate binding, product release, provided the voltammograms are modelled quantitatively[90, 60].

Figure 5 shows that the wave shape of molybdenum enzymes is very varied, ranging from very simple sigmoidal shapes (figure 5d) to complex functions with local maxima and minima (figure 5a). The existence of a maximum in the curve, with the activity decreasing when the driving force increases past a certain threshold, is a puzzling feature of the catalytic wave shapes of molybdoenzymes, which is present in respiratory[29, 30] and dissimilatory nitrate reductases[36], respiratory DMSO reductase[40], but also under saturating conditions in sulfite dehydrogenase[69, 70], which shows that this feature is not limited to reductive catalysis[69]. This feature has been attributed to a faster binding of substrate (or protons) to the Mo(V) state than to the Mo(IV) state. Bertrand and coworkers have proposed the most complete model so far[48]. They derived the equations for the wave shape under the assumption of slow (and possibly reversible) substrate binding to all the redox states of the active site; they showed that this model has the complexity required to reproduce even the complex wave shapes of NarGH (figure 6), and they used it to quantitatively model the wave shapes of Rv NapAB[48]. However, the fits of this model for NapAB imply the existence of a stable Mo(V) species for the free active site, and it was later shown that it is not the case[53].

Wave shapes given by formate dehydrogenase (figure 5c) and arsenite oxidase (figure 5g) are much more simple, and resemble those obtained for hydrogenases[91, 60]; they have not been quantitatively modelled yet.

3.3. Activations/inactivations

Following the evolution of the activity over time as an enzyme activates or inactivates is very easy using direct electrochemistry, that samples the activity at high frequencies. The study of inactivation processes can sometimes provide lots of insights into the chemistry of the active site of enzymes[92, 93].

Another striking feature of molybdoenzymes is the observation that some of the enzymes activate or inactivate on the electrode in a potential dependent manner. These processes are sig-
nificant, because they inform on the presence of inactive states that may be wrongly taken for active species in spectroscopic experiments. The most emblematic example is probably the Mo(V) "high g resting" state, that was thought to correspond to the Mo(V) state of the free active site, but was found instead to be an inactive form that activates the first time the enzyme is reduced[53], in which the pterin is probably oxidized[54]. Other enzymes like NarB[32] and NarGH[32, 33] also activate the first time they are reduced; this is reminiscent of the "redox cycling" process that activates DMSO reductases[94–96], also this activation has not been observed in electrochemical experiments yet. These first activation processes are easy to miss, since they disappear after the first reduction, it is possible that they may have been overlooked in other molybdoenzymes.

Finally, Rs also inactivates in the presence of large quantities of nitrate, in oxidizing conditions[55, 56], although the nature of the inactive species is still unclear. Nevertheless, the existence of such inactivations must be taken into account when designing experiments to trap catalytic intermediates to be characterized by spectroscopic techniques, to avoid mistaking inactive species for active ones.

4. Conclusion

This article provides an exhaustive review of the direct electrochemistry of molybdenum and tungsten enzymes. Molybdoenzymes have very rich electrochemical behaviours, with complex catalytic behaviours, the possibility to observe non-catalytic signals, and complex activation/inactivation processes. Their versatility in terms of substrates processed and their high activities also make them good candidates for using in biotechnological devices like biosensors or biofuel cells.

Acknowledgments

The author acknowledges support from CNRS, Agence Nationale de la Recherche (ANR-12-BS08-0014, ANR-14-CE05-0010) and the A*MIDEX project (n° ANR-11-IDEX-0001-02) funded by the «Investissements d’Avenir» French Government program, managed by the French National Research Agency (ANR). The author is a member of the French Bioinorganic Chemistry group (http://frenchbic.cnrs.fr).

References

tutions and their effect on catalysis and electron transfer., Biochim. Bio-
09.005.

[71] G. G. Barbier, R. C. Joshi, E. R. Campbell, W. H. Campbell, Purifica-
tion and biochemical characterization of simplified eukaryotic nitrate re-

[72] P. Kalimuthu, P. Ringel, T. Kruse, P. V. Bernhardt, Direct electrochem-
istry of nitrate reductase from the fungus Neospora crassa., Biochim.
2016.04.001.

[73] P. Kalimuthu, K. Fischer-Schrader, G. Schwarz, P. V. Bernhardt, Mediated
electrochemistry of nitrate reductase from Arabidopsis thaliana., J. Phys.

The first non-turnover voltammetric response from a molybdenum enzyme:
direct electrochemistry of dimethylsulfoxide reductase from Rhodobacter
S00775-002-0374-y.

[75] C. Léger, K.-F. Aguey-Zinsou, P. Bernhardt, I. Brereton, G. Hanson,
A. McEwan, Site-directed mutagenesis of dimethyl sulfoxide reductase
from Rhodobacter capsulatus: Characterization of a Y114F mutant, Bio-

F. Blasco, R. A. Rothery, J. H. Weiner, F. A. Armstrong, Detection and
interpretation of redox potential optima in the catalytic activity of en-
S0005-2728(02)00254-2.

Armstrong, Enzyme electrokinetics: using protein film voltammetry to
investigate redox enzymes and their mechanisms., Biochemistry 42 (29)

[78] K. F. Aguey-Zinsou, P. V. Bernhardt, S. Leimkühler, Protein film voltam-
metry of Rhodobacter capsulatus xanthine dehydrogenase., J. Am. Chem.

[79] P. V. Bernhardt, M. J. Honeychurch, A. G. McEwan, Direct electrochem-
ically driven catalysis of bovine milk xanthine oxidase, Electrochemistry
08.009.

[80] P. Kalimuthu, S. Leimkühler, P. V. Bernhardt, Xanthine dehydrogenase

[81] Y. Wu, S. Hu, Direct electron transfer of xanthine oxidase and its catalytic
1016/j.acalch Acta.2007.09.005.

[82] D. Shan, Y.-N. Wang, H.-G. Xue, S. Cosnier, S.-N. Ding, Xanthine
oxidase/laponite nanoparticles immobilized on glassy carbon electrode:
direct electron transfer and multielectrocatalysis., Biosens Bioelectron

[83] P. V. Bernhardt, J. M. Santini, Protein film voltammetry of arsenite oxi-
dase from the chemolithoautotrophic arsenite-oxidizing bacterium NT-26,
2016.04.001.

[84] P. Pinyou, A. Ruff, S. Pöller, S. Alsaoub, S. Leimkühler, U. Wollenberger,
W. Schulmann, Wiring of the aldehyde oxidoreductase paac6 to elec-
trode surfaces via entrapment in low potential phenothiazine-modified re-
j.bioelechem.2015.12.006.

[85] V. Fourmond, C. Léger, Modelling the voltammetry of adsorbed enzymes

persion of interfacial electron transfer rates on steady state catalytic elec-
tron transport in [NiFe]-hydrogenase and other enzymes, J. Phys. Chem.

[87] V. Fourmond, C. Greco, K. Siburna, C. Baffert, P.-H. Wang, P. Ezanno,
M. Monteforti, M. Bruschi, I. Meynial-Salles, P. Soucaille, J. Blumberger,
H. Bottin, L. de Gioia, C. Léger, The oxidative inactivation of FeFe
hydrogenase reveals the flexibility of the H-cluster., Nat. Chem. 6 (4) (2014)
336–342. doi:10.1038/nchem.1892.

[88] A. Kubas, C. Orain, D. De Sancho, L. Sautier, M. Sensi, C. Gauquelin,
I. Meynial-Salles, P. Soucaille, H. Bottin, C. Baffert, V. Fourmond, R. B.
Best, J. Blumberger, C. Léger, Mechanism of O2 diffusion and reduction in
nchem.2017.5.

[89] G. George, J. Hilton, C. Temple, R. Prince, K. Rajagopalan, Structure of
the molybdenum site of dimethyl sulfoxide reductase., J. Am. Chem. Soc.

[90] R. Bray, B. Adams, A. Smith, B. Bennett, S. Bailey, Reversible associa-
tion of thiolate ligands from molybdenum in an enzyme of the dimethyl
doi:10.1021/bi0005521.

[91] A. F. Bell, X. He, J. P. Ridge, G. R. Hanson, A. G. McEwan, P. J. Tonge,
Active site heterogeneity in dimethyl sulfoxide reductase from Rhodobac-
ter capsulatus revealed by Raman spectroscopy., Biochemistry 40 (2)