C. C. Fowlkes, C. Hendriks, S. Kerä-nen, G. H. Weber, and O. Rübel, A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm, Cell, vol.133, pp.364-374, 2008.

E. Segal, T. Raveh-sadka, M. Schroeder, U. Unnerstall, and U. Gaul, Predicting expression patterns from regulatory sequence in Drosophila segmentation, Nature, vol.451, pp.535-540, 2008.

E. Frise, A. S. Hammonds, and S. E. Celniker, Systematic image-driven analysis of the spatial Drosophila embryonic expression landscape, Mol Syst Biol, vol.6, p.345, 2010.

C. Buecker and J. Wysocka, Enhancers as information integration hubs in development: lessons from genomics, Trends in Genetics, vol.28, pp.276-284, 2012.

N. Sanchez, M. Potier, D. Haagen, L. Sánchez, M. Munck et al., Comparative motif discovery combined with comparative transcriptomics yields accurate targetome and enhancer predictions, Genome Res, vol.23, pp.74-88, 2013.

C. Herrmann, B. Van-de-sande, D. Potier, and S. Aerts, i-cisTarget: an integrative genomics method for the prediction of regulatory features and cisregulatory modules, Nucleic acids research, vol.40, p.114, 2012.

B. Ganetzky, Genetic analysis of ion channel dysfunction in Drosophila, Kidney Int, vol.57, pp.766-771, 2000.

E. Marban, Cardiac channelopathies, Nature, vol.415, pp.213-218, 2002.

M. Cerrone, C. Napolitano, and S. G. Priori, Genetics of ion-channel disorders, Current opinion in cardiology, vol.27, pp.242-252, 2012.

R. Créton, J. A. Kreiling, and L. F. Jaffe, Presence and roles of calcium gradients along the dorsal-ventral axis in Drosophila embryos, Dev Biol, vol.217, pp.375-385, 2000.

M. Fontenele, K. Carneiro, R. Agrellos, D. Oliveira, and A. Oliveira-silva, The Ca2+-dependent protease Calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals, Mech Dev, vol.126, pp.737-751, 2009.

E. Pym, T. D. Southall, C. J. Mee, A. H. Brand, and R. A. Baines, The homeobox transcription factor Even-skipped regulates acquisition of electrical properties in Drosophila neurons, Neural Dev, vol.1, p.3, 2006.

V. Wolfram, T. D. Southall, A. H. Brand, and R. A. Baines, The LIMhomeodomain protein islet dictates motor neuron electrical properties by regulating K(+) channel expression, Neuron, vol.75, pp.663-674, 2012.
DOI : 10.1016/j.neuron.2012.06.015

URL : https://doi.org/10.1016/j.neuron.2012.06.015

M. F. Romero, D. Henry, S. Nelson, P. J. Harte, and A. K. Dillon, Cloning and characterization of a Na+-driven anion exchanger (NDAE1). A new bicarbonate transporter, J Biol Chem, vol.275, pp.24552-24559, 2000.
DOI : 10.1074/jbc.m003476200

URL : http://www.jbc.org/content/275/32/24552.full.pdf

M. F. Romero, C. M. Fulton, and W. F. Boron, The SLC4 family of HCO 3transporters, Pflugers Arch, vol.447, pp.495-509, 2004.
DOI : 10.1007/s00424-003-1180-2

M. F. Romero, A. Chen, M. D. Parker, and W. F. Boron, The SLC4 family of bicarbonate (HCO 2 ) transporters, Mol Aspects Med, vol.34, pp.159-182, 2013.
DOI : 10.1016/j.mam.2012.10.008

URL : http://europepmc.org/articles/pmc3605756?pdf=render

G. Fitzharris and J. M. Baltz, Regulation of intracellular pH during oocyte growth and maturation in mammals, Reproduction, vol.138, pp.619-627, 2009.

C. M. Sciortino, L. D. Shrode, B. R. Fletcher, P. J. Harte, and M. F. Romero, Localization of endogenous and recombinant Na(+)-driven anion exchanger protein NDAE1 from Drosophila melanogaster, Am J Physiol Cell Physiol, vol.281, pp.449-463, 2001.
DOI : 10.1152/ajpcell.2001.281.2.c449

M. Soleimani and C. E. Burnham, Physiologic and molecular aspects of the Na+ :HCO3-cotransporter in health and disease processes, Kidney Int, vol.57, pp.371-384, 2000.

E. Cordat and J. R. Casey, Bicarbonate transport in cell physiology and disease, Biochem J, vol.417, pp.423-439, 2009.
DOI : 10.1042/bj20081634

URL : http://www.biochemj.org/content/ppbiochemj/417/2/423.full.pdf

M. D. Parker, X. Qin, R. C. Williamson, A. M. Toye, and W. F. Boron, HCO(3)(-)independent conductance with a mutant Na(+)/HCO(3)(-) cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis, J Physiol (Lond), vol.590, pp.2009-2034, 2012.

M. Chesler, Regulation and modulation of pH in the brain, Physiol Rev, vol.83, pp.1183-1221, 2003.

A. Sinning, L. Liebmann, A. Kougioumtzes, M. Westermann, and C. Bruehl, Synaptic glutamate release is modulated by the Na+-driven Cl-/HCO 2 exchanger Slc4a8, J Neurosci, vol.31, pp.7300-7311, 2011.
DOI : 10.1523/jneurosci.0269-11.2011

URL : http://www.jneurosci.org/content/jneuro/31/20/7300.full.pdf

S. Jacobs, E. Ruusuvuori, S. T. Sipilä, A. Haapanen, and H. H. Damkier, Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability, Proc Natl Acad Sci U S A, vol.105, pp.311-316, 2008.
DOI : 10.1073/pnas.0705487105

URL : http://www.pnas.org/content/105/1/311.full.pdf

C. A. Gurnett, R. Veile, J. Zempel, L. Blackburn, and M. Lovett, Disruption of sodium bicarbonate transporter SLC4A10 in a patient with complex partial epilepsy and mental retardation, Arch Neurol, vol.65, pp.550-553, 2008.

A. Krepischi, J. Knijnenburg, D. R. Bertola, C. A. Kim, and P. L. Pearson, Two distinct regions in 2q24.2-q24.3 associated with idiopathic epilepsy, Epilepsia, vol.51, pp.2457-2460, 2010.
DOI : 10.1111/j.1528-1167.2010.02742.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1528-1167.2010.02742.x

J. Sebat, B. Lakshmi, D. Malhotra, J. Troge, and C. Lese-martin, Strong association of de novo copy number mutations with autism, Science, vol.316, pp.445-449, 2007.
DOI : 10.1126/science.1138659

URL : http://repository.cshl.edu/23136/1/Strong%20Association%20of%20De%20Novo.pdf

O. Devinsky, A. Vezzani, S. Najjar, D. Lanerolle, N. C. Rogawski et al., Glia and epilepsy: excitability and inflammation, Trends Neurosci, vol.36, pp.174-184, 2013.
DOI : 10.1016/j.tins.2012.11.008

K. A. Vossel, A. J. Beagle, G. D. Rabinovici, H. Shu, and S. E. Lee, Seizures and epileptiform activity in the early stages of Alzheimer disease, JAMA Neurol, vol.70, pp.1158-1166, 2013.

A. Winkelmann, N. Maggio, J. Eller, G. Caliskan, and M. Semtner, Changes in neural network homeostasis trigger neuropsychiatric symptoms, J Clin Invest, 2014.
DOI : 10.1172/jci71472

URL : http://www.jci.org/articles/view/71472/files/pdf

S. Barolo, L. Carver, and J. Posakony, GFP and beta-galactosidase transformation vectors for promoter/enhancer analysis in Drosophila, Biotechniques, vol.29, p.732, 2000.
DOI : 10.2144/00294bm10

L. Perrin, B. Monier, R. Ponzielli, M. Astier, and M. Sémériva, Drosophila cardiac tube organogenesis requires multiple phases of Hox activity, Dev Biol, vol.272, pp.419-431, 2004.
DOI : 10.1016/j.ydbio.2004.04.036

URL : https://hal.archives-ouvertes.fr/hal-00311201

V. Amodio, M. F. Tevy, C. Traina, T. K. Ghosh, and M. Capovilla, Transactivation in Drosophila of human enhancers by human transcription factors involved in congenital heart diseases. Developmental dynamics: an official publication of the, pp.190-199, 2012.

R. Bernardoni, M. Kammerer, J. Vonesch, and A. Giangrande, Gliogenesis Depends on glide/gcm through Asymmetric Division of Neuroglioblasts, Developmental biology, vol.216, pp.265-275, 1999.

D. Morisato and K. V. Anderson, Signaling pathways that establish the dorsalventral pattern of the Drosophila embryo, Annu Rev Genet, vol.29, pp.371-399, 1995.

M. P. Belvin and K. V. Anderson, A conserved signaling pathway: the Drosophila toll-dorsal pathway, Annu Rev Cell Dev Biol, vol.12, pp.393-416, 1996.
DOI : 10.1146/annurev.cellbio.12.1.393

B. Moussian and S. Roth, Dorsoventral axis formation in the Drosophila embryo-shaping and transducing a morphogen gradient, Curr Biol, vol.15, 2005.

G. T. Reeves and A. Stathopoulos, Graded dorsal and differential gene regulation in the Drosophila embryo, Cold Spring Harb Perspect Biol, vol.1, p.836, 2009.
DOI : 10.1101/cshperspect.a000836

URL : http://cshperspectives.cshlp.org/content/1/4/a000836.full.pdf

D. S. Schneider, K. L. Hudson, T. Y. Lin, and K. V. Anderson, Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo, Genes Dev, vol.5, pp.797-807, 1991.

D. Morisato and K. V. Anderson, The spä tzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo, Cell, vol.76, pp.677-688, 1994.

K. A. Winans and C. Hashimoto, Ventralization of the Drosophila embryo by deletion of extracellular leucine-rich repeats in the Toll protein, Mol Biol Cell, vol.6, pp.587-596, 1995.

S. Roth, D. Stein, and C. Nüsslein-volhard, A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo, Cell, vol.59, pp.1189-1202, 1989.

C. A. Rushlow, K. Han, J. L. Manley, and M. Levine, The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila, Cell, vol.59, pp.1165-1177, 1989.

R. Steward, Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function, Cell, vol.59, pp.1179-1188, 1989.

A. Stathopoulos and M. Levine, Genomic regulatory networks and animal development, Dev Cell, vol.9, pp.449-462, 2005.
DOI : 10.1016/j.devcel.2005.09.005

URL : https://doi.org/10.1016/j.devcel.2005.09.005

J. Hong, D. A. Hendrix, D. Papatsenko, and M. S. Levine, How the Dorsal gradient works: insights from postgenome technologies, Proc Natl Acad Sci U S A, vol.105, pp.20072-20076, 2008.
DOI : 10.1073/pnas.0806476105

URL : http://www.pnas.org/content/105/51/20072.full.pdf

J. Jiang, D. Kosman, Y. T. Ip, and M. Levine, The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos, Genes Dev, vol.5, pp.1881-1891, 1991.

Y. T. Ip, R. E. Park, D. Kosman, K. Yazdanbakhsh, and M. Levine, dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo, Genes Dev, vol.6, pp.1518-1530, 1992.

J. Jiang and M. Levine, Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen, Cell, vol.72, pp.741-752, 1993.
DOI : 10.1016/0092-8674(93)90402-c

Y. T. Ip and T. Gridley, Cell movements during gastrulation: snail dependent and independent pathways, Curr Opin Genet Dev, vol.12, pp.423-429, 2002.
DOI : 10.1016/s0959-437x(02)00320-9

A. Stathopoulos, M. Van-drenth, A. Erives, M. Markstein, and M. Levine, Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo, Cell, vol.111, pp.687-701, 2002.

M. Kazemian, C. Blatti, A. Richards, M. Mccutchan, and N. Wakabayashi-ito, Quantitative analysis of the Drosophila segmentation regulatory network using pattern generating potentials, PLoS Biol, vol.8, 2010.

A. Scuderi and A. Letsou, Amnioserosa is required for dorsal closure in Drosophila, Dev Dyn, vol.232, pp.791-800, 2005.
DOI : 10.1002/dvdy.20403

URL : http://onlinelibrary.wiley.com/doi/10.1002/dvdy.20403/pdf

M. Narasimha and N. H. Brown, Novel functions for integrins in epithelial morphogenesis, Curr Biol, vol.14, pp.381-385, 2004.
DOI : 10.1016/j.cub.2004.02.033

URL : https://doi.org/10.1016/j.cub.2004.02.033

B. G. Fernández, A. M. Arias, and J. A. , Dpp signalling orchestrates dorsal closure by regulating cell shape changes both in the amnioserosa and in the epidermis, Mech Dev, vol.124, pp.884-897, 2007.

A. Wada, K. Kato, M. F. Uwo, S. Yonemura, and S. Hayashi, Specialized extraembryonic cells connect embryonic and extraembryonic epidermis in response to Dpp during dorsal closure in Drosophila, Dev Biol, vol.301, pp.340-349, 2007.
DOI : 10.1016/j.ydbio.2006.09.020

URL : https://doi.org/10.1016/j.ydbio.2006.09.020

M. L. Lamka and H. D. Lipshitz, Role of the amnioserosa in germ band retraction of the Drosophila melanogaster embryo, Dev Biol, vol.214, pp.102-112, 1999.

T. Hummel, K. Krukkert, J. Roos, and G. Davis, Klä mbt C (2000) Drosophila Futsch/ 22C10 is a MAP1B-like protein required for dendritic and axonal development, Neuron, vol.26, pp.357-370
DOI : 10.1016/s0896-6273(00)81169-1

URL : https://doi.org/10.1016/s0896-6273(00)81169-1

M. S. Jarial, Ultrastructure of the anal organ of Drosophila larva with reference to ion transport, Tissue Cell, vol.19, pp.559-575, 1987.

P. Keyser, K. Borge-renberg, and D. Hultmark, The Drosophila NFAT homolog is involved in salt stress tolerance, Insect Biochem Mol Biol, vol.37, pp.356-362, 2007.
DOI : 10.1016/j.ibmb.2006.12.009

A. Mehta, A. Deshpande, and F. Missirlis, Genetic screening for novel Drosophila mutants with discrepancies in iron metabolism, Biochem Soc Trans, vol.36, pp.1313-1316, 2008.
DOI : 10.1042/bst0361313