G. Z. Hertz, G. W. Hartzell, and G. D. Stormo, Identification of consensus patterns in unaligned DNA sequences known to be functionally related, Comput Appl Biosci, vol.6, pp.81-92, 1990.

C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald et al., Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment, Science, vol.262, pp.208-214, 1993.

A. F. Neuwald, J. S. Liu, and C. E. Lawrence, Gibbs motif sampling: detection of bacterial outer membrane protein repeats, Protein Sci, vol.4, pp.1618-1632, 1995.

T. L. Bailey and C. Elkan, The value of prior knowledge in discovering motifs with MEME, Proc Int Conf Intell Syst Mol Biol, vol.3, pp.21-29, 1995.

J. Van-helden, A. B. Collado-vides, and J. , Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies, J Mol Biol, vol.281, pp.827-842, 1998.

A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert, Approaches to the automatic discovery of patterns in biosequences, J Comput Biol, vol.5, pp.279-305, 1998.

A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen, Predicting gene regulatory elements in silico on a genomic scale, Genome Res, vol.8, pp.1202-1215, 1998.

G. Z. Hertz and G. D. Stormo, Identifying DNA and protein patterns with statistically significant alignments of multiple sequences, Bioinformatics, vol.15, pp.563-577, 1999.

J. Van-helden, A. F. Rios, and J. Collado-vides, Discovering regulatory elements in non-coding sequences by analysis of spaced dyads, Nucleic Acids Res, vol.28, pp.1808-1818, 2000.

G. Thijs, M. Lescot, K. Marchal, S. Rombauts, D. Moor et al., A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling, Bioinformatics, vol.17, pp.1113-1122, 2001.

X. Liu, D. L. Brutlag, and J. S. Liu, BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes, Pac Symp Biocomput, pp.127-138, 2001.

D. A. Tagle, B. F. Koop, M. Goodman, J. L. Slightom, D. L. Hess et al., Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints, J Mol Biol, vol.203, pp.439-455, 1988.

W. W. Wasserman and J. W. Fickett, Identification of regulatory regions which confer muscle-specific gene expression, J Mol Biol, vol.278, pp.167-181, 1998.

W. W. Wasserman, M. Palumbo, W. Thompson, J. W. Fickett, and C. E. Lawrence, Human-mouse genome comparisons to locate regulatory sites, Nat Genet, vol.26, pp.225-228, 2000.

J. W. Fickett and W. W. Wasserman, Discovery and modeling of transcriptional regulatory regions, Curr Opin Biotechnol, vol.11, pp.19-24, 2000.

M. Tompa, Identifying functional elements by comparative DNA sequence analysis, Genome Res, vol.11, pp.1143-1144, 2001.

A. M. Mcguire, J. D. Hughes, and G. M. Church, Conservation of DNA regulatory motifs and discovery of new motifs in microbial genomes, Genome Res, vol.10, pp.744-757, 2000.

L. Mccue, W. Thompson, C. Carmack, M. P. Ryan, J. S. Liu et al., Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes, Nucleic Acids Res, vol.29, pp.774-782, 2001.

W. B. Alkema, B. Lenhard, and W. W. Wasserman, Regulog analysis: detection of conserved regulatory networks across bacteria: application to Staphylococcus aureus, Genome Res, vol.14, pp.1362-1373, 2004.

M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander, Sequencing and comparison of yeast species to identify genes and regulatory elements, Nature, vol.423, pp.241-254, 2003.

D. F. Feng and R. F. Doolittle, Progressive alignment of amino acid sequences and construction of phylogenetic trees from them, Methods Enzymol, vol.266, pp.368-382, 1996.

S. Sinha, M. Blanchette, and M. Tompa, PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences, BMC Bioinformatics, vol.5, p.170, 2004.

A. M. Moses, D. Y. Chiang, and M. B. Eisen, Phylogenetic motif detection by expectation-maximization on evolutionary mixtures, Pac Symp Biocomput, pp.324-335, 2004.

A. Prakash, M. Blanchette, S. Sinha, and M. Tompa, Motif discovery in heterogeneous sequence data, Pac Symp Biocomput, pp.348-359, 2004.

T. Wang and G. D. Stormo, Combining phylogenetic data with coregulated genes to identify regulatory motifs, Bioinformatics, vol.19, pp.2369-2380, 2003.

R. Siddharthan, E. D. Siggia, and E. Van-nimwegen, PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny, PLoS Comput Biol, vol.1, p.67, 2005.

M. Blanchette and M. Tompa, FootPrinter: A program designed for phylogenetic footprinting, Nucleic Acids Res, vol.31, pp.3840-3842, 2003.

D. A. Pollard, C. M. Bergman, J. Stoye, S. E. Celniker, and M. B. Eisen, Benchmarking tools for the alignment of functional noncoding DNA, BMC Bioinformatics, vol.5, p.6, 2004.

M. Blanchette, W. J. Kent, C. Riemer, L. Elnitski, A. F. Smit et al., Aligning multiple genomic sequences with the threaded blockset aligner, Genome Res, vol.14, pp.708-715, 2004.

J. Van-helden, Regulatory sequence analysis tools, Nucleic Acids Res, vol.31, pp.3593-3596, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01624369

E. Perez-rueda and J. Collado-vides, The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12, Nucleic Acids Res, vol.28, pp.1838-1847, 2000.

J. W. Little, D. W. Mount, and C. R. Yanisch-perron, Purified lexA protein is a repressor of the recA and lexA genes, Proc Natl Acad Sci, vol.78, pp.4199-4203, 1981.

H. Salgado, S. Gama-castro, M. Peralta-gil, E. Diaz-peredo, F. Sanchezsolano et al., Collado-Vides J: RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions, Nucleic Acids Res, vol.34, pp.394-401, 2006.

G. C. Walker, The SOS response of Escherichia coli, In Escherichia coli and Salmonella: Cellular and Molecular Biology, 1996.

M. Radman, SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis, Basic Life Sci, vol.5, pp.355-367, 1975.

G. C. Walker, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli, Microbiol Rev, vol.48, pp.60-93, 1984.

J. Collado-vides, B. Magasanik, and J. D. Gralla, Control site location and transcriptional regulation in Escherichia coli, Microbiol Rev, vol.55, pp.371-394, 1991.

M. Babu, M. Teichmann, and S. A. , Functional determinants of transcription factors in Escherichia coli: protein families and binding sites, Trends Genet, vol.19, pp.75-79, 2003.

S. Moreno-campuzano, S. C. Janga, and E. Perez-rueda, Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes-a genomic approach, BMC Genomics, vol.7, p.147, 2006.

H. Salgado, G. Moreno-hagelsieb, T. F. Smith, and J. Collado-vides, Operons in Escherichia coli: genomic analyses and predictions, Proc Natl Acad Sci, vol.97, pp.6652-6657, 2000.

I. Erill, M. Jara, N. Salvador, M. Escribano, S. Campoy et al., Differences in LexA regulon structure among Proteobacteria through in vivo assisted comparative genomics, Nucleic Acids Res, vol.32, pp.6617-6626, 2004.

S. Hurstel, M. Granger-schnarr, and M. Schnarr, Contacts between the LexA repressor-or its DNA-binding domain-and the backbone of the recA operator DNA, Embo J, vol.7, pp.269-275, 1988.

H. Salgado, S. Gama-castro, A. Martinez-antonio, E. Diaz-peredo, F. Sanchez-solano et al., ): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12, RegulonDB, vol.32, pp.303-309, 2004.

B. Yang and T. J. Larson, Action at a distance for negative control of transcription of the glpD gene encoding sn-glycerol 3-phosphate dehydrogenase of Escherichia coli K-12, J Bacteriol, vol.178, pp.7090-7098, 1996.

G. Mazon, I. Erill, S. Campoy, P. Cortes, E. Forano et al., Reconstruction of the evolutionary history of the LexA-binding sequence, Microbiology, vol.150, pp.3783-3795, 2004.

S. Campoy, G. Mazon, A. R. Fernandez-de-henestrosa, M. Llagostera, P. B. Monteiro et al., A new regulatory DNA motif of the gamma subclass Proteobacteria: identification of the LexA protein binding site of the plant pathogen Xylella fastidiosa, Microbiology, vol.148, pp.3583-3597, 2002.

I. Erill, M. Escribano, S. Campoy, and J. Barbe, In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon, Bioinformatics, vol.19, pp.2225-2236, 2003.

D. L. Cheo, K. W. Bayles, and R. E. Yasbin, Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis, J Bacteriol, vol.173, pp.1696-1703, 1991.

K. W. Winterling, D. Chafin, J. J. Hayes, J. Sun, A. S. Levine et al., The Bacillus subtilis DinR binding site: redefinition of the consensus sequence, J Bacteriol, vol.180, pp.2201-2211, 1998.

E. S. Groban, M. B. Johnson, P. Banky, P. G. Burnett, G. L. Calderon et al., Binding of the Bacillus subtilis LexA protein to the SOS operator, Nucleic Acids Res, vol.33, pp.6287-6295, 2005.

S. Vierling, T. Weber, W. Wohlleben, and G. Muth, Evidence that an additional mutation is required to tolerate insertional inactivation of the Streptomyces lividans recA gene, J Bacteriol, vol.183, pp.4374-4381, 2001.

L. A. Mccue, W. Thompson, C. S. Carmack, and C. E. Lawrence, Factors influencing the identification of transcription factor binding sites by cross-species comparison

, Genome Res, vol.12, pp.1523-1532, 2002.

S. Neph and M. Tompa, MicroFootPrinter: a tool for phylogenetic footprinting in prokaryotic genomes, Nucleic Acids Res, vol.34, pp.366-374, 2006.

F. P. Roth, J. D. Hughes, P. W. Estep, and G. M. Church, Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation, Nat Biotechnol, vol.16, pp.939-945, 1998.

S. Brohee and J. Van-helden, Evaluation of clustering algorithms for protein-protein interaction networks, BMC Bioinformatics, vol.7, p.488, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01624322

M. Tompa, N. Li, T. L. Bailey, G. M. Church, D. Moor et al., Assessing computational tools for the discovery of transcription factor binding sites, Nat Biotechnol, vol.23, pp.137-144, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01624324

T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc Int Conf Intell Syst Mol Biol, vol.2, pp.28-36, 1994.

S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church, Systematic determination of genetic network architecture, Nat Genet, vol.22, pp.281-285, 1999.

A. P. Gasch, A. M. Moses, D. Y. Chiang, H. B. Fraser, M. Berardini et al., Conservation and evolution of cis-regulatory systems in ascomycete fungi, PLoS Biol, vol.2, p.398, 2004.

, The Regulatory Sequence Analysis Tools (RSAT)

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J Mol Biol, vol.215, pp.403-410, 1990.

M. A. Huynen and P. Bork, Measuring genome evolution, Proc Natl Acad Sci U S A, vol.95, pp.5849-5856, 1998.

R. Janky and J. Van-helden, Discovery of conserved motifs in promoters of orthologous genes in prokaryotes, Methods in Molecular Biology, vol.395, pp.293-308, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01624316

J. Van-helden, A. B. Collado-vides, and J. , A web site for the computational analysis of yeast regulatory sequences, Yeast, vol.16, pp.177-187, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01624374

D. A. Benson, I. Karsch-mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp et al., GenBank. Nucleic Acids Res, vol.28, pp.15-18, 2000.

D. L. Wheeler, C. Chappey, A. E. Lash, D. D. Leipe, T. L. Madden et al., Database resources of the National Center for Biotechnology Information, vol.28, pp.10-14, 2000.

S. Okuda, S. Kawashima, and M. Kanehisa, Database of Operons in Bacillus subtilis, Genome Informatics, vol.13, pp.496-497, 2002.

M. J. De-hoon, S. Imoto, K. Kobayashi, N. Ogasawara, and S. Miyano, Predicting the operon structure of Bacillus subtilis using operon length, intergene distance, and gene expression information, Pac Symp Biocomput, pp.276-287, 2004.

S. Kurtz and C. Schleiermacher, REPuter: fast computation of maximal repeats in complete genomes, Bioinformatics, vol.15, pp.426-427, 1999.

S. Kurtz, J. V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye et al., REPuter: the manifold applications of repeat analysis on a genomic scale, Nucleic Acids Res, vol.29, pp.4633-4642, 2001.

, The R Project for Statistical Computing

K. F. Wertman and D. W. Mount, Nucleotide sequence binding specificity of the LexA repressor of Escherichia coli K-12, J Bacteriol, vol.163, pp.376-384, 1985.

L. K. Lewis, G. R. Harlow, G. , L. A. Mount, and D. W. , Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli, J Mol Biol, vol.241, pp.507-523, 1994.

A. Tapias and J. Barbe, Regulation of divergent transcription from the uvrA-ssb promoters in Sinorhizobium meliloti, Mol Gen Genet, vol.262, pp.121-130, 1999.

S. Campoy, M. Fontes, S. Padmanabhan, P. Cortes, M. Llagostera et al., LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus, Mol Microbiol, vol.49, pp.769-781, 2003.

G. Mazon, J. M. Lucena, S. Campoy, A. R. Fernandez-de-henestrosa, P. Candau et al., LexA-binding sequences in Gram-positive and cyanobacteria are closely related, Mol Genet Genomics, vol.271, pp.40-49, 2004.

F. Movahedzadeh, M. J. Colston, and E. O. Davis, Characterization of Mycobacterium tuberculosis LexA: recognition of a Cheo (Bacillus-type SOS) box. Microbiology, vol.143, pp.929-936, 1997.

S. I. Durbach, S. J. Andersen, and V. Mizrahi, SOS induction in mycobacteria: analysis of the DNA-binding activity of a LexA-like repressor and its role in DNA damage induction of the recA gene from Mycobacterium smegmatis, Mol Microbiol, vol.26, pp.643-653, 1997.

G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

A. M. Huerta, H. Salgado, D. Thieffry, and J. Collado-vides, RegulonDB: a database on transcriptional regulation in Escherichia coli, Nucleic Acids Res, vol.26, pp.55-59, 1998.
DOI : 10.1093/nar/26.1.55

URL : https://academic.oup.com/nar/article-pdf/26/1/55/7049237/26-1-55.pdf