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Numerical simulations investigating the interaction of co-existent 2/1 and 3/1 neoclassical tearing 
modes are presented. The results obtained from an initial value 3D toroidal code that solves a set of

generalized reduced MHD equations exhibit a host of complex phenomena arising from the

coupling of the two modes. These include a modification of the island saturation widths of the two 
modes, a significant modification in the perpendicular flow patterns in the vicinity of the islands,

and the excitation of geodesic acoustic mode like oscillations that lead to concomitant oscillations

in the kinetic and magnetic energies of the islands. These oscillations only occur in the presence of 
the neoclassical stress tensor contribution and are absent for two coupled classical tearing modes.

I. INTRODUCTION

Neoclassical tearing modes (NTMs) pose a serious chal-

lenge for the optimal operation of advanced tokamaks like

ITER1,2 that would like to operate at high values of b in order

to maximize their efficiency. These modes are excited by the

loss of the bootstrap current inside a seed magnetic island

causing the island to grow. If the growth is not controlled it

can lead to severe degradation of confinement and in some

cases to disruptions. NTMs are believed to set the upper limit

on attainable normalized plasma bN
3,4 in long pulse tokamaks

and have therefore been the subject of much experimental

and theoretical investigations in the recent past.5–11 While

there has been considerable progress in the experimental

characterization and control of this instability with concurrent

development of a useful theoretical framework in the form of

a model island evolution equation (the modified Rutherford

equation) there are still many basic physics issues associated

with the mode that remain poorly understood or relatively

less explored. The trigger and the mechanism for the creation

of the seed island, nonlinear mode coupling between NTMs

of different helicities, interaction of the magnetic island with

energetic particles, evolution of the island in a turbulent

media12–14 are among some of the basic areas that need fur-

ther attention. Mode coupling is an important issue that can

play a significant role at various stages of the evolution of

NTMs starting from the onset to its saturation. The triggering

of a seed island at the q ¼ 2 surface due to a sawtooth crash

at the q ¼ 1 surface or due to fishbones is an example of a

mode coupling process operating at the onset stage.5,6 There

is also experimental evidence of mode coupling effects influ-

encing the evolution of multiple NTMs often leading to the

predominance of a single helicity over others.6,8–10 There

have been some past model studies addressing the issue of

the interaction between multiple helicity NTMs. In Ref. 7, it

was suggested that the interaction of magnetic islands pro-

duces a stochastic region around the separatrices of the

islands. This interaction causes the island pressure profile to

be broadened, reducing the island bootstrap current and drive

for the magnetic island. The creation of a stochastic region

requires the islands to be close to each other creating an over-

lap between them. In a similar study in Ref. 8, it was shown

that once two magnetic islands of different helicities got close

to each other the more unstable magnetic island survived and

suppressed the less unstable one. The mechanism responsible

for this suppression was attributed to the decreased funda-

mental harmonic pressure perturbations of the NTM in the

presence of magnetic perturbations of different helicities. The

role of a stochastic layer was also emphasized in Ref. 9 where

for MHD simulations carried out for ITER like plasmas it

was found that the modes do not couple until significant sto-

chastization between two tearing island chains occurs. After

stochastization a quick amplitude drop of one or several

modes was observed. In the present work, we revisit this

problem and study the evolution of two unstable NTMs with

well separated resonant surfaces (of helicities 2/1 and 3/1)

through numerical simulations carried out on a fully toroidal

code that solves a set of generalized MHD equations.11,15 In

contrast to earlier studies, we find that there can be significant

coupling between the two modes without the creation of a

stochastic layer and resulting in quite complex nonlinear

behavior. The coupling is found to occur through modifica-

tions of the velocity flow patterns around the magnetic islands

which induce geodesic acoustic mode (GAM)-like oscilla-

tions of the mode energies in the presence of strong (0/0) and

(1/0) zonal magnetic fields. Such a phenomenon is observed

only for NTMs and not for two classical tearing modes evolv-

ing simultaneously indicating that the mechanism is related to

pressure perturbations modifying the neoclassical drive.

These oscillations also disappear in the absence of Vk dynam-

ics. The coupling reduces the saturation states of both the

modes without fully suppressing the weakly unstable mode.

Such an alternate coupling mechanism might explain the ex-

istence of multiple NTMs in some recent experiments on

JET16 where simultaneous existence of (2/1) and (3/1) modes

have been observed.
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II. MODEL EQUATIONS

As mentioned above, our numerical simulations are

based on the solutions of a set of generalized reduced MHD

equations that were first derived in Ref. 15. The equations,

which are valid for any aspect ratio, were derived using

kk=k? (the ratio of parallel to perpendicular wave numbers)

as a small expansion parameter d and by employing a multi-

ple scale analysis that respects equilibrium constraints and

also permits elimination of fast time scales associated with

perpendicular wave motion. The model equations thus evolve

scalar potential quantities on a time scale associated with the

parallel wave vector (shear-Alfv�en wave time scale), which is

the time scale of interest for resistive MHD instabilities like

tearing modes. In the limit of b � d1=2ðd� 1Þ (where b is

the ratio of plasma pressure to magnetic pressure), the evolu-

tion equations can be written as follows:

@W
@t
� ð~b0 þ ~b1Þ � r/1 � ~b1 � r/0 ¼ gJk1 �

1

ne
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Equation (1) is Ohm’s law, with W representing the

magnetic flux, / is the electrostatic potential, J is the current

density, g is the resistivity, B is the magnetic field, and
~~Pe is

the electron stress tensor. The last term on the right hand

side of Ohm’s law is the contribution from the neoclassical

electron viscous damping term and is the driving term for the

neoclassical tearing mode. Equation (2) is the vorticity equa-

tion with ~V the flow velocity. Equation (3) is the pressure

evolution equation where heat flow terms have been retained

with ~q representing the heat flux, C representing the ratio of

specific heats and v?; vk representing the heat transport coef-

ficients in the perpendicular and parallel directions, respec-

tively. In general the transport coefficients can depend on

various plasma parameters such as temperature, density, tur-

bulence levels as well as kinetic effects. For the evolution of

NTMs, we have assumed that in the vicinity of the island

structure the effect of topological changes associated with

the magnetic island are likely to be more important than the

spatial variation of the coefficients.17 We have, therefore,

modeled vk and v? to be constant across the plasma radius.

The critical parameter is the ratio vk=v? which has to be

large enough to ensure rapid plasma pressure equilibration

on the flux surface.11 For all our runs, we have ensured that

this happens by keeping the ratio to be �106. Finally,

Equation (4) is the evolution equation for the parallel veloc-

ity component. Here, the mass density q has been taken as a

constant. The above equations have been programmed into

an initial value code, called NEAR, which was benchmarked

and used for classical and neoclassical tearing modes in pre-

vious studies.11 The various details of the code like normal-

ization, algorithm etc., have been described in Refs. 11 and

15. Our emphasis in the present work is on understanding the

nonlinear dynamics of multiple tearing modes in the pres-

ence of the neoclassical viscous stress tensor term in Ohm’s

law. The self consistent equilibrium for all our studies were

generated by numerically solving the Grad Shafranov (GS)

equation with the help of the TOQ code.18 This code solves

the GS equation using an inverse equilibrium solver in which

the real space coordinates are directly obtained as functions

of the magnetic flux functions. The coordinate system

used in the code is of the constant arc length variety as

opposed to a straight field line representation. An iterative

algorithm is employed to obtain a solution when given any

two flux functions out of various options, such as specifying

the pressure gradient profile and the q profile, or the pressure

gradient profile and parallel current density profile etc. In our

case we have specified a pressure profile of the form

p0 ¼ p00ð1� x2Þ2:49
, where x ¼ r=a is the normalized minor

radial coordinate, p00 is the maximum value of the pressure,

and a is the minor radius. The parallel current density profile

has been taken to be of the form Jk0 ¼ Jk00ð1� 1:41x2

þ 0:439x4 � 0:65x6 þ 1:62x8 � 1:68x10 þ 0:685x12Þ, where

Jk00 is the peak value of the parallel current density. The

normalized radial profiles of the equilibrium pressure, the

equilibrium parallel current density and the corresponding

profile of the safety factor q are shown in Fig. 1.

III. NUMERICAL SIMULATION RESULTS

In this section, we describe the simulation results

obtained using NEAR. We have taken ðm; nÞ ¼ ð2; 1Þ and



(3,1) as perturbed modes, where m is the poloidal mode

number and n is the toroidal mode number. A large number

of equilibrium modes (m,n)¼ (0,0),(1,0),(2,0),(3,0),(4,0),

etc. have been evolved to take care of the nonlinear

modification of the equilibrium. The choice of these modes

is motivated by recent experimental observations of the

simultaneous existence of (2,1) and (3,1) modes in the JET

tokamak.16 Further, as will become clear later in the paper,

the nonlinearly excited (1,0) mode plays an important role

and its excitation gets naturally enhanced due to coupling

between modes with the same toroidal mode number. The

magnetic Reynolds number S ð¼sR=sAÞ has been kept at 105

in all runs. We have taken a typical equilibrium of circular

shape with aspect ratio R=a � 10 with the equilibrium pro-

files mentioned in Sec. II and as shown in Fig. 1. This partic-

ular value of the aspect ratio was chosen for convenience

since the code has been validated extensively for such a

value in our earlier simulations.11,19 As shown in Ref. 15,

the model equations we have used do not rely for their deri-

vation on a large aspect ratio assumption, and hence a

change in the aspect ratio to smaller values is not likely to

have a significant impact on the results obtained.

At first, we have started with purely neoclassical tearing

modes. We have taken an equilibrium profile (with toroidal

b0 ¼ 0:009) that is classically stable (D0 < 0) to the (2,1)

and (3,1) modes. We have made the equilibrium classically

stable or unstable by changing the plasma b values as D0

FIG. 1. Normalized equilibrium profiles for the plasma pressure (top panel),

parallel current density (center panel), and the safety factor (bottom panel).

FIG. 2. Temporal evolution of magnetic energies for coupled and single

NTMs (top panel) and comparison of magnetic and flow energies (bottom

panel) for D0 < 0, finite le.



decreases with the increase of the plasma b value. So in the

absence of any neoclassical driving term ðle ¼ 0Þ or at very

low initial amplitudes the mode energies decrease as they are

evolved in time. In the presence of a finite le and for an ini-

tial amplitude beyond a threshold value the mode is unstable

and starts to grow till it saturates nonlinearly. In Fig. 2, we

show the time evolution of the coupled modes as well as that

of a single helicity mode. Here, we have defined the energy

related to w; /; Vjj, and p of modes (m,n) as E
ðm;nÞ
w

¼
Ð
jrwðm;nÞj2d3x; E

ðm;nÞ
/ ¼

Ð
jr/ðm;nÞj2d3x; E

ðm;nÞ
Vjj
¼
Ð

Vjj
ðm;nÞ2

d3x and E
ðm;nÞ
p ¼ j

Ð
pðm;nÞd3xj, respectively. We see a distinct

difference in their behaviour as shown in the top panel of

Fig. 2. The coupled NTMs show oscillations in the time evo-

lution of their energies, while there are no such oscillations

in the time evolution of a single (3,1) NTM. The bottom

panel of Fig. 2 shows that coupled NTMs generate higher

perpendicular flows. Note also that the saturation level of the

singly evolving (3,1) NTM is lower than when it is coupled

to the (2,1) mode. This is because the basic (2,1) mode is

more unstable than the (3,1) mode for the equilibrium profile

chosen in this case for the simulation.

To confirm that the oscillations have their origin in the

neoclassical stress tensor term we have next carried out sim-

ulations with an equilibrium profile that is slightly unstable

(D0 > 0) to classical tearing modes in order to compare the

behaviour of the modes when the neoclassical term is

switched on or off. Fig. 3 shows that there are no oscillations

in the energy evolution for coupled classical tearing modes,

i.e., when le ¼ 0. In this case, the flow energy also remains

small compared to the magnetic energy. The top panel of

Fig. 5 shows that perpendicular flows are as usual restricted

to their respective resonant surfaces.

Then when we switch on the neoclassical term (i.e., we

take a finite le) for the same equilibrium we observe oscilla-

tions in the energy evolution as shown in Fig. 4. In this case,

we also find higher values of the zonal magnetic fields (i.e.,

FIG. 3. Temporal evolution of magnetic energies for coupled tearing modes

(TMs) (top panel) and comparison of magnetic and flow energies (bottom

panel) for D0 > 0; le ¼ 0.

FIG. 4. Temporal evolution of magnetic energies with time for coupled TMs

(top panel) and comparison of magnetic and flow energies (bottom panel)

for D0 > 0, finite le.



(0,0), (1,0) components) compared to the case for pure clas-

sical tearing modes. Fig. 4 shows the generation of higher

perpendicular flows in the presence of a finite neoclassical

viscous term. The bottom panel of Fig. 5 shows the equipo-

tential contours of /. In contrast to the usual picture one has

for pure classical tearing modes, we find that the flows are

not restricted to their respective resonant surfaces but spread

much beyond them. We also observe small scale flows inside

the resonance layer. The top panel of Fig. 6 plot the magnetic

flux surfaces using the Poincare plot which shows the (2,1)

and (3,1) magnetic islands and the corresponding radial pro-

files of the electromagnetic potential W are shown in the

bottom panel.

Next, we have tried to investigate the influence of paral-

lel dynamics on the observed phenomena. As a simple mea-

sure, we have decoupled the Vk dynamical equation from the

Ohm’s law and the vorticity equations (by dropping the

terms proportional to Vk in the latter two) and repeated

the simulation runs for the coupled NTMs. Fig. 7 shows the

result of such a run and we notice that the oscillations in the

energy have disappeared. This indicates that parallel dynam-

ics plays an important role in the occurrence of oscillations.

To understand the nature of the oscillations a bit better,

we have determined the characteristic frequencies of the

oscillations from the power spectrum of the magnetic energy

oscillations of the coupled NTMs. This is shown in the top

panel of Fig. 8. Such spectra have been obtained for various

values of b. Selecting the first harmonic peak of each of

these spectra we have plotted the square of the oscillation

frequencies for various values of b as shown in the bottom

panel of Fig. 8. A linear fit appears to best describe the de-

pendence of the square of the frequency on b indicating an

acoustic origin of these oscillations. For comparison the

curves with higher powers of b are also shown in the same

plot. Figs. 9 and 10 describe time evolutions of magnetic,

flow, and pressure energies of the (2,1), (3,1), (0,0), and (1,0)

modes. The enhanced values of the pressure components at

the time of oscillations provide further evidence of the

acoustic nature of the oscillations.

IV. DISCUSSION

We have studied the mode coupling dynamics of two

neoclassical tearing modes whose resonant surfaces are quite

FIG. 5. / contours of coupled tearing modes with D0 > 0; le ¼ 0 (top

panel) and with D0 > 0, finite le (bottom panel) at saturation.

FIG. 6. Poincare plot showing the magnetic flux surfaces (top panel) and ra-

dial profiles of the electromagnetic potential W (bottom panel) for coupled

tearing modes.



far apart. In contrast to past studies where the existence of a

stochastic layer due to island overlap of closely spaced tear-

ing layers enhances mode coupling effects we find a dis-

tinctly different and direct mechanism that has its origin in

the presence of the neoclassical electron viscosity term in the

Ohm’s law. The presence of the neoclassical term leads to

the excitation of oscillations in the mode energies, which is

accompanied by an increase of flow energy and a substantial

spreading of the flow beyond the resonant surfaces. The

oscillations appear to be of an acoustic origin and are similar

in nature to GAMs. The appearance of such oscillations are

also accompanied by an increase in the energy content of the

(0,0) and (1,0) equilibrium modes. The physical picture that

emerges from a careful analysis of our numerical simulations

is the following. A direct parametric interaction between the

evolving (2,1) and (3,1) modes gives rise to perturbed neo-

classical pressure contributions rpð0;0Þ and rpð1;0Þ in the

Ohm’s law. This in turn leads to the excitation of perturbed

current components J
ð0;0Þ
k and J

ð1;0Þ
k and further leads to the

generation of larger perpendicular flows through the contri-

bution of the Maxwell stress tensor term ðB1 � rÞJk in the

vorticity equation. The physical mechanism is somewhat

analogous to what has been invoked for the interaction of

magnetic islands with drift wave turbulence where the simul-

taneous excitation of modified GAMs along with large scale

oscillatory vortices have been observed.14 The subsequent

compressional coupling between vorticity and parallel flow

gives rise to perpendicular flows. In our case, as the numeri-

cal simulations show, it is the finite neoclassical electron vis-

cosity term in the Ohm’s law that permits flow of energy

from the pressure gradient to the perpendicular flow through

the involvement of the parallel current contribution. This

mechanism is also consistent with past observations20 that

zonal fields can only be generated with a term in Ohm’s law

that can break the frozen-in law. The electron neoclassical

term in the Ohm’s law that is proportional to dp=dw serves

that purpose and gives rise to the zonal fields at the resonant

surfaces. We see clear evidence of this in the simulations

from the enhanced energies in wð0;0Þ and wð1;0Þ field compo-

nents as shown in Fig. 4.

To confirm the acoustic nature of the oscillations, we

have obtained the frequency of oscillations from a power

spectrum analysis of the time evolution of E
ð2;1Þ
w for coupled

NTMs and found the dominant characteristic frequency

of the oscillations to be close to that of a GAM. A typical

GAM frequency can be approximately21,22 written as xGAM

� cs

R �
cs

VAsA
, where cs ¼

ffiffiffiffiffiffiffiffiffiffiffi
Te=M

p
is the ion sound speed (Te is

FIG. 7. Comparisons of the evolution of magnetic (top panel) and kinetic

energies (bottom panel) for coupled NTMs by decoupling Vjj terms.
FIG. 8. Power spectrum of the oscillations in magnetic energies for (2,1)

coupled NTMs of Fig. 1 (top panel) and the filled circles in the plot on the

bottom panel represent the square of frequencies of oscillations for different

b0 values. The lines are analytic curves that have a linear (red, solid), quad-

ratic (blue, dotted) and a fourth power dependence on b0 and have been

drawn to show that the data are best represented by a linear fit.



the electron temperature and M is the ion mass). Further,

VA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2=ð4pqÞ

p
is the Alfv�en velocity and sA is the Alfv�en

time. So the frequency fGAMsA �
ffiffiffi
b
p

=2p. As discussed ear-

lier the bottom panel of Fig. 8 showing the plot of the square

of the characteristic frequencies of the oscillations for differ-

ent b values shows a linear trend indicating that these oscil-

lations are likely to be of acoustic origin.

To conclude, our numerical simulation studies display a

new and direct mode coupling mechanism between two

NTMs of different helicities that can influence their nonlin-

ear evolution. Apart from impacting their saturation levels

the coupling induces GAM like oscillations that provide a

more complex evolution signature for the NTMs. It would be

interesting to identify such an effect experimentally particu-

larly in situations where simultaneous existence of different

helicity modes are observed.
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