F. Simonato, S. Campanaro, F. Lauro, A. Vezzi, and M. D9angelo, Piezophilic adaptation: a genomic point of view, Journal of Biotechnology, vol.126, issue.1, pp.11-25, 2006.
DOI : 10.1016/j.jbiotec.2006.03.038

A. Yayanos, Microbiology To 10,500 Meters in the Deep Sea, Annual Review of Microbiology, vol.49, issue.1, pp.777-805, 1995.
DOI : 10.1146/annurev.mi.49.100195.004021

A. Vossmeyer, C. Deusner, C. Kato, F. Inagaki, and T. Ferdelman, Substratespecific pressure-dependence of microbial sulfate reduction in deep-sea cold seep sediments of the Japan Trench, Front Microbiol, vol.3, p.253, 2012.

C. Bienhold, P. Ristova, P. Wenzhöfer, F. Dittmar, T. Boetius et al., How Deep-Sea Wood Falls Sustain Chemosynthetic Life, PLoS ONE, vol.12, issue.1, p.53590, 2013.
DOI : 10.1371/journal.pone.0053590.s013

URL : https://doi.org/10.1371/journal.pone.0053590

B. Orcutt, D. Larowe, J. Biddle, F. Colwell, and B. Glazer, Microbial activity in the marine deep biosphere: progress and prospects, Frontiers in Microbiology, vol.4, p.189, 2013.
DOI : 10.3389/fmicb.2013.00189

S. Khelaifia, M. Fardeau, N. Pradel, C. Aussignargues, and M. Garel, Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.61, issue.11, pp.2706-2711, 2011.
DOI : 10.1099/ijs.0.028670-0

URL : https://hal.archives-ouvertes.fr/hal-00747501

D. Alazard, S. Dukan, A. Urios, F. Verhé, and N. Bouabida, Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.53, issue.1, pp.173-178, 2003.
DOI : 10.1099/ijs.0.02323-0

B. Ji, G. Gimenez, V. Barbe, B. Vacherie, and Z. Rouy, Complete genome sequence of the piezophilic, mesophilic, sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13 (T.), Genome Announc, vol.1, pp.226-238, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00809071

S. Campanaro, A. Vezzi, N. Vitulo, F. Lauro, and M. D9angelo, Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains, BMC Genomics, vol.6, issue.1, pp.122-136, 2005.
DOI : 10.1186/1471-2164-6-122

B. Boonyaratanakornkit, L. Miao, and D. Clark, Transcriptional responses of the deep-sea hyperthermophile Methanocaldococcus jannaschii under shifting extremes of temperature and pressure, Extremophiles, vol.3, issue.Pt 2, pp.495-503, 2007.
DOI : 10.1007/s00792-007-0063-4

Y. Ohke, A. Sakoda, C. Kato, Y. Sambongi, and J. Kawamoto, DSS12 in Response to Growth Conditions, Bioscience, Biotechnology, and Biochemistry, vol.77, issue.7, pp.1522-1528, 2013.
DOI : 10.1246/cl.2004.798

N. Pradel, J. B. Gimenez, G. Talla, E. Lenoble, and P. , The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus, PLoS ONE, vol.22, issue.1, p.55130, 2013.
DOI : 10.1371/journal.pone.0055130.s012

URL : https://hal.archives-ouvertes.fr/hal-00787201

H. Jannasch and C. Taylor, Deep-Sea Microbiology, Annual Review of Microbiology, vol.38, issue.1, pp.487-514, 1984.
DOI : 10.1146/annurev.mi.38.100184.002415

A. Quinlan and I. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, issue.6, pp.841-842, 2010.
DOI : 10.1093/bioinformatics/btq033

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biology, vol.11, issue.10, p.106, 2010.
DOI : 10.1186/gb-2010-11-10-r106

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218662/pdf

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing, J R Statist Soc, vol.57, pp.289-300, 1995.

R. Chaudhuri, L. Yu, A. Kanji, T. Perkins, and P. Gardner, Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome, Microbiology, vol.157, issue.10, pp.2922-2932, 2011.
DOI : 10.1099/mic.0.050278-0

Y. Zhang, E. Pohlmann, and G. Roberts, Effect of Perturbation of ATP Level on the Activity and Regulation of Nitrogenase in Rhodospirillum rubrum, Journal of Bacteriology, vol.191, issue.17, pp.5526-5537, 2009.
DOI : 10.1128/JB.00585-09

R. Holt and S. Jones, The new paradigm of flow cell sequencing, Genome Research, vol.18, issue.6, pp.839-846, 2008.
DOI : 10.1101/gr.073262.107

D. Bartlett, Pressure effects on in vivo microbial processes, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1595, issue.1-2, pp.367-381, 2002.
DOI : 10.1016/S0167-4838(01)00357-0

A. Vezzi, S. Campanaro, M. D9angelo, F. Simonato, and N. Vitulo, Life at Depth: Photobacterium profundum Genome Sequence and Expression Analysis, Science, vol.307, issue.5714, pp.1459-1461, 2005.
DOI : 10.1126/science.1103341

B. Meyer, J. Kuehl, A. Deutschbauer, M. Price, and A. Arkin, Variation among Desulfovibrio Species in Electron Transfer Systems Used for Syntrophic Growth, Journal of Bacteriology, vol.195, issue.5, pp.990-1004, 2013.
DOI : 10.1128/JB.01959-12

S. Haveman, V. Brunelle, J. Voordouw, G. Voordouw, and J. Heidelberg, Gene Expression Analysis of Energy Metabolism Mutants of Desulfovibrio vulgaris Hildenborough Indicates an Important Role for Alcohol Dehydrogenase, Journal of Bacteriology, vol.185, issue.15, pp.4345-4353, 2003.
DOI : 10.1128/JB.185.15.4345-4353.2003

W. Van-heeswijk, H. Westerhoff, and F. Boogerd, Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective, Microbiology and Molecular Biology Reviews, vol.77, issue.4, pp.628-695, 2013.
DOI : 10.1128/MMBR.00025-13

M. Bruschi, P. Bertrand, C. More, G. Leroy, and J. Bonicel, Biochemical and spectroscopic characterization of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough expressed in Desulfovibrio desulfuricans G200, Biochemistry, vol.31, issue.12, pp.3281-3288, 1992.
DOI : 10.1021/bi00127a033

D. Martin, D. Bartlett, and M. Roberts, Solute accumulation in the deep-sea bacterium Photobacterium profundum, Extremophiles, vol.6, issue.6, pp.507-514, 2002.
DOI : 10.1007/s00792-002-0288-1

S. Campanaro, L. Treu, and G. Valle, Protein evolution in deep sea bacteria: an analysis of amino acids substitution rates, BMC Evolutionary Biology, vol.8, issue.1, p.313, 2008.
DOI : 10.1186/1471-2148-8-313

L. Bihan, T. Rayner, J. Roy, M. Spagnolo, and L. , Photobacterium profundum under Pressure: A MS-Based Label-Free Quantitative Proteomics Study, PLoS ONE, vol.7, issue.5, p.60897, 2013.
DOI : 10.1371/journal.pone.0060897.s004

A. Ikegami, K. Nakasone, C. Kato, Y. Nakamura, and I. Yoshikawa, Glutamine synthetase gene expression at elevated hydrostatic pressure in a deep-sea piezophilic Shewanella violacea, FEMS Microbiology Letters, vol.192, issue.1, pp.91-95, 2000.
DOI : 10.1111/j.1574-6968.2000.tb09364.x

H. Tamegai, S. Nishikawa, M. Haga, and D. Bartlett, SS9 Grown under Various Pressures, Bioscience, Biotechnology, and Biochemistry, vol.76, issue.8, pp.1506-1510, 2012.
DOI : 10.1007/s00792-010-0345-0

T. Suszynski, G. Wildey, E. Falde, G. Cline, and K. Maynard, The ATP/DNA Ratio Is a Better Indicator of Islet Cell Viability Than the ADP/ATP Ratio, Transplantation Proceedings, vol.40, issue.2, pp.346-350, 2008.
DOI : 10.1016/j.transproceed.2008.01.061

J. Heidelberg, R. Seshadri, S. Haveman, C. Hemme, and I. Paulsen, The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, Nature Biotechnology, vol.10, issue.5, pp.554-559, 2004.
DOI : 10.1093/nar/29.1.41

C. Pereira, I. Ramos, A. Grein, F. Marques, M. et al., A comparative genomic analysis of energy metabolism in sulfate reducing bacetria and archaea, Front Microbiol, vol.2, p.69, 2011.

K. Keller and J. Wall, Genetics and Molecular Biology of the Electron Flow for Sulfate Respiration in Desulfovibrio, Frontiers in Microbiology, vol.2, p.135, 2011.
DOI : 10.3389/fmicb.2011.00135