A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Optics at critical intensity: Applications to nanomorphing, Proc. Natl Acad. Sci. USA 101, pp.5856-5861, 2004.
DOI : 10.1038/418290a

URL : http://www.pnas.org/content/101/16/5856.full.pdf

C. Kerse, Ablation-cooled material removal with ultrafast bursts of pulses, Nature, vol.439, issue.198, pp.84-88, 2016.
DOI : 10.1038/nature04492

M. F. Yanik, Functional regeneration after laser axotomy, Nature, vol.432, issue.822, 2004.
DOI : 10.1038/432822a

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery, Physical Review Letters, vol.34, issue.3, p.38102, 2008.
DOI : 10.1021/cr010379n

E. N. Glezer and E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials, Applied Physics Letters, vol.54, issue.7, pp.882-884, 1997.
DOI : 10.1063/1.1658407

A. Vailionis, Evidence of superdense aluminium synthesized by ultrafast microexplosion, Nature Communications, vol.26, p.445, 2011.
DOI : 10.1103/PhysRev.69.604

J. Zhang, M. Gecevi?ius, M. Beresna, and P. G. Kazansky, Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass, Physical Review Letters, vol.112, issue.3, p.33901, 2014.
DOI : 10.1364/OE.16.006397

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, Finer features for functional microdevices, Nature, vol.24, issue.6848, pp.697-698, 2001.
DOI : 10.1143/JJAP.37.L684

M. Farsari and B. N. Chichkov, Two-photon fabrication, Nature Photonics, vol.3, issue.8, pp.450-452, 2009.
DOI : 10.1038/nphoton.2009.131

V. V. Kononenko, V. V. Konov, and E. M. Dianov, Delocalization of femtosecond radiation in silicon, Optics Letters, vol.37, issue.16, pp.3369-3371, 2012.
DOI : 10.1364/OL.37.003369

A. Mouskeftaras, Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses, Applied Physics Letters, vol.105, issue.19, 2014.
DOI : 10.1103/PhysRevLett.62.2711

URL : https://hal.archives-ouvertes.fr/hal-01418550

A. H. Nejadmalayeri, Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses, Optics Letters, vol.30, issue.9, pp.964-966, 2005.
DOI : 10.1364/OL.30.000964

M. Mori, Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing, physica status solidi (a), vol.81, issue.4, pp.715-721, 2015.
DOI : 10.1103/PhysRevB.81.245318

Y. Shimotsuma, Nanostructuring in Indirect Band-gap Semiconductor Using IR Femtosecond Double Pulses, Journal of Laser Micro/Nanoengineering, vol.11, issue.1, pp.35-40, 2016.
DOI : 10.2961/jlmn.2016.01.0007

URL : http://www.jlps.gr.jp/jlmn/upload/243f76cb5c1f597fe85a6ba301055b4c.pdf

O. Tokel, In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Preprint at https://arxiv.org/abs, p.2827, 1409.
DOI : 10.1038/s41566-017-0004-4

URL : http://europepmc.org/articles/pmc5624509?pdf=render

P. C. Verburg, Crystal structure of laser-induced subsurface modifications in Si, Applied Physics A, vol.129, issue.7, pp.683-691, 2015.
DOI : 10.1016/j.ssc.2003.11.020

M. Chambonneau, Q. Li, M. Chanal, N. Sanner, and D. Grojo, Writing waveguides inside monolithic crystalline silicon with nanosecond laser pulses, Optics Letters, vol.41, issue.21, pp.4875-4878, 2016.
DOI : 10.1364/OL.41.004875

URL : https://hal.archives-ouvertes.fr/hal-01418487

A. Mouskeftaras, Direct measurement of ambipolar diffusion in bulk silicon by ultrafast infrared imaging of laser-induced microplasmas, Applied Physics Letters, vol.108, issue.4, p.41107, 2016.
DOI : 10.1103/PhysRevB.26.2147

URL : https://hal.archives-ouvertes.fr/hal-01418492

D. Grojo, Long-wavelength multiphoton ionization inside band-gap solids, Physical Review B, vol.20, issue.19, p.195135, 2013.
DOI : 10.1103/PhysRevLett.91.107601

URL : https://hal.archives-ouvertes.fr/hal-01418582

M. Lenzner, Femtosecond Optical Breakdown in Dielectrics, Physical Review Letters, vol.31, issue.18, pp.4076-4079, 1998.
DOI : 10.1016/0038-1101(88)90357-7

D. Linde-der-von and H. Schuler, Breakdown threshold and plasma formation in femtosecond laser???solid interaction, Journal of the Optical Society of America B, vol.13, issue.1, pp.216-222, 1996.
DOI : 10.1364/JOSAB.13.000216

V. Y. Fedorov, M. Chanal, D. Grojo, and S. Tzortzakis, Accessing Extreme Spatiotemporal Localization of High-Power Laser Radiation through Transformation Optics and Scalar Wave Equations, Physical Review Letters, vol.117, issue.4, p.43902, 2016.
DOI : 10.1103/PhysRevB.88.195135

URL : https://hal.archives-ouvertes.fr/hal-01418493

E. V. Zavedeev, V. V. Kononenko, and V. I. Konov, Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range, Laser Physics, vol.26, issue.1, p.16101, 2016.
DOI : 10.1088/1054-660X/26/1/016101

S. M. Mansfield and G. S. Kino, Solid immersion microscope, Applied Physics Letters, vol.43, issue.24, p.2615, 1990.
DOI : 10.1098/rspa.1959.0200

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, Structural changes in fused silica after exposure to focused femtosecond laser pulses, Optics Letters, vol.26, issue.21, pp.1726-1728, 2001.
DOI : 10.1364/OL.26.001726

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, Form birefringence and negative index change created by femtosecond direct writing in transparent materials, Optics Letters, vol.29, issue.1, pp.119-121, 2004.
DOI : 10.1364/OL.29.000119

V. Bhardwaj, Optically Produced Arrays of Planar Nanostructures inside Fused Silica, Physical Review Letters, vol.26, issue.5, p.57404, 2006.
DOI : 10.1103/PhysRevB.30.519

K. A. Serreis, E. Ramsay, R. J. Warburton, and D. T. Reid, Nanoscale optical microscopy in the vectorial focusing regime, Nature Photonics, vol.24, issue.5, pp.311-314, 2008.
DOI : 10.1038/nphoton.2008.29

|. Doi, 10.1038/s41467-017-00907-8 ARTICLE, NATURE COMMUNICATIONS NATURE COMMUNICATIONS |, vol.8
URL : https://hal.archives-ouvertes.fr/in2p3-00652853

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, Crossing the Resolution Limit in Near-Infrared Imaging of Silicon Chips: Targeting 10-nm Node Technology, Physical Review X, vol.5, issue.2, p.21014, 2015.
DOI : 10.1364/JOSAA.31.002610

L. Ghislain and V. Elings, Near-field photolithography with a solid immersion lens, Applied Physics Letters, vol.74, issue.4, 1999.
DOI : 10.1098/rspa.1959.0200

M. Duocastella, Sub-wavelength Laser Nanopatterning using Droplet Lenses, Scientific Reports, vol.18, issue.1, p.16199, 2015.
DOI : 10.1364/OE.18.021815

URL : http://www.nature.com/articles/srep16199.pdf

E. Mudry, L. Moal, E. Ferrand, P. Chaumet, P. C. Sentenac et al., Isotropic Diffraction-Limited Focusing Using a Single Objective Lens, Physical Review Letters, vol.105, issue.20, p.203903, 2010.
DOI : 10.1038/nphoton.2007.297

URL : https://hal.archives-ouvertes.fr/hal-00535900

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing waveguides in glass with a femtosecond laser, Optics Letters, vol.21, issue.21, pp.1729-1731, 1996.
DOI : 10.1364/OL.21.001729

E. N. Glezer, Three-dimensional optical storage inside transparent materials, Optics Letters, vol.21, issue.24, pp.2023-2025, 1996.
DOI : 10.1364/OL.21.002023

S. W. Hell, E. H. Stelzer, S. Lindek, and C. Cremer, Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy, Optics Letters, vol.19, issue.3, pp.222-224, 1994.
DOI : 10.1364/OL.19.000222

URL : http://www.kip.uni-heidelberg.de/AG_Cremer/pdf-files/1994HellOpticLetters19.pdf

M. Kim, T. Scharf, C. Etrich, C. Rockstuhl, and H. H. Peter, Longitudinal-differential interferometry: direct imaging of axial superluminal phase propagation, Optics Letters, vol.37, issue.3, pp.305-307, 2012.
DOI : 10.1364/OL.37.000305