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A growth-fragmentation approach for modeling microtubule

dynamic instability

Florence Hubert ∗ Magali Tournus † Diana White ‡

Abstract

Microtubules (MTs) are protein filaments found in all eukaryotic cells which are crucial for
many cellular processes including cell movement, cell differentiation, and cell division. Due
to their role in cell division, they are often used as targets for chemotherapy drugs used in
cancer treatment. Experimental studies of MT dynamics have played an important role in the
development and administration of many novel cancer drugs, however, a complete description
of MT dynamics is lacking. Here, we propose a new mathematical model for MT dynamics,
that can be used to study the effects of chemotherapy drugs on MT dynamics. Our model
consists of a growth-fragmentation equation describing the dynamics of a density of MTs, coupled
with two ODEs that describe the dynamics of free GTP- and GDP-tubulin concentrations (the
individual dimers that comprise of MTs). We prove the well-posedness of our system and perform
a numerical exploration of the influence of the parameters on the systems dynamics. This
exploration helps provide insight into the action of MT-targeting chemotherapy drugs on MT
dynamics.

Key-words: Growth-fragmentation model, Banach fixed point, Microtubules dynamics.
Subject Classifications: 45K05, 92C37.

1 Introduction

Microtubules (MTs) are dynamic protein polymers that are found in all eukaryotic cells. They
are crucial for normal cell development, aiding in many cellular processes, including cell division,
cell polarization, and cell motility [21]. Due to their role in cell movement and cell division, these
polymers are often used as targets for a variety of cancer chemotherapy drugs. Many experimental
studies have been completed to understand MT dynamics [9, 2, 23, 1], and how these dynamics are
altered by the addition of MT targeting drugs [15, 26]. However, a complete understanding of such
dynamics is lacking, and so the development of new theoretical models to describe MT dynamics is
important.

MTs undergo a unique type of dynamics referred to as dynamic instability, which was first
described by Kirschner and Mitchison in 1984 [9]. This type of dynamics is unique to MT polymers,
and refers to the relative slow growth of a MT, followed by very fast depolymerization. The switch
from growing to shortening is referred to as a catastrophe event, whereas the switch from shortening
to growth is refered to as a rescue.

MTs are composed of tubulin heterodimers, and grow through the addition of GTP-bound
tubulin (guanosine triphosphate), generally from the so called plus end of the MT, and shrink
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Figure 1: Schematic representation of the polymerization-fragmentation-recycling cycle. When the hydrolysis rate
exceeds the growth rate, the stabilizing cap (in light blue) gradually disappears. As soon as the cap completely
vanishes, a catastrophe (shortening event) can occur: the microtubule shortens and the remaining GDP-tubulin (in
blue) is released into the system. GDP-tubulin is then recycled into GTP-tubulin (in light blue) which is used for the
growth of other microtubules through polymerization.

through dissociation of GDP-bound tubulin (guanosine diphosphate) at this same end [21]. The
minus end of the MT is generally more stable, being capped by stabilizing proteins.

As MTs grow, older GTP-tubulin dimers hydrolyze to the lower energy GDP-tubulin, creating
two distinct regions along the length of a MT. That is, a back end composed of GDP-tubulin, and
a front end composed of GTP-tubulin. This GTP region at the growing end of a MT is referred
to as the CAP. If a MT is growing at a rate faster than that of hydrolysis, the MT will continue
to grow. However, if the rate of hydrolysis is greater than the rate of growth, the CAP region will
begin to shorten. If the CAP region vanishes, the MT will undergo a so-called catastrophe, and
enter a state of shortening (fragmentation). See Figure 1 for a representation of the polymerization-
fragmentation-recycling cycle.

Since the discovery of dynamic instability, many theoretical [3, 7], stochastic, and computational
models [6, 12, 14, 13] have been developed to better understand this unique type of behavior. Most
continuous models use advection-type terms to describe MT growth and shortening at the macro-
scopic level, whereas stochastic-type models, and many computational models provide a microscopic
description of dimer addition and subtraction (see for example the first stochastic model by Hill
and Chen [6]).

Here, based on the Hinow model [7], we develop a novel deterministic modeling approach in a
continuous setting to describe MT dynamics. Similar to the Hinow model, we follow the mean behav-
ior of a family of microtubules. The uniqueness of our approach is the use of a fragmentation term
in the MT dynamics equation to account for sudden MT shortening. The growth-fragmentation
equation is coupled to a system of ODEs that describe the dynamics of free-GTP and GDP-tubulin
populations. Models consisting of an ODE coupled with an integro-partial differential equation are
already extensively used and studied in the description of Prion dynamics [5]. To the best of our
knowledge, the use of a fragmentation term to represent the sudden depolymerization of a micro-
tubule has only been used by the authors [24]. One specificity of our model is the fragmentation
kernel which is not self-similar, so that our system cannot be easily reduced to a system of ODEs,
like was done for Prion.

In addition to modeling MT dynamic instability in the base case (the case without introduction
of drugs), we account for the action of MT targeting chemotherapy drugs on MT dynamics through
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variation of certain model parameters. Such drugs work by acting on MTs during cell division,
causing cells to die, and alter the dynamics of MTs by either promoting MT assembly (MT stabilizing
drugs) or promoting MT dissasembly (MT destabilizing drugs). However, at low (non-cytotoxic)
doses, such drugs can alter MT dynamics without significantly altering the total MT polymer mass
[26]. The exploration of numerical solutions and their comparison with experimental results provides
insight into which parameters are likely to be regulated by the addition of MT targeting drugs. In
particular, these simulations will allow us to determine which parameter variations promote MT
stabilization and which promote destabilization.

This model describes the dynamics of MTs in an in vitro setting. Describing the dynamics of
MTs in an in vivo setting would require us to take into account many other cellular components,
such as MT associated proteins and other cellular components including the cell boundary [21].

The outline of the paper is the following: In Section 2, we detail the development of our model
which consists of an integro-partial differential equation, endowed with biologically realistic bound-
ary conditions to describe MT dynamics, coupled with two ODEs that describe the time evolution
of free GTP and GDP-tubulin concentrations. Here, we provide specific properties that certain
model functions and parameters must satisfy. Section 3 is devoted to the well-posedness of the
model. Here, we place more general assumptions on model parameters and functions. Finally, in
Sections 4, we perform numerical simulations to illustrate the behavior of our model in the base
case. Parameters are estimated so that certain outputs of the model fit experimental data. In this
section we also incorporate the action of MT targeting drugs through alteration of certain model
parameters. Using these results we explore how stabilizing and destabilizing drugs might work to
alter the normal (base case) behavior of the MT/tubulin system.

2 Description of the model

The evolution of the density u(x, t) of microtubules of length x ≥ 0 at time t > 0 is described by
the one-dimensional growth-fragmentation equation (1). We neglect the complex cylindrical shape
of MTs, and assume that they have linear structures.

∂u(x, t)

∂t
+ γ(p(t))

∂u(x, t)

∂x
= β(p(t))

(
−
∫ x

0
k(x, y)dy u(x, t) +

∫ ∞
x

k(y, x)u(y, t)dy

)
+N(p(t))ξ(x)

(1)
Equation (1) is coupled with a system of two ODEs, describing the time evolution of the con-

centrations of GTP-tubulin p(t) and GDP-tubulin q(t), respectively,

dp

dt
(t) = −γ(p(t))

∫ ∞
0

u(x, t)dx−N(p(t)) + κq(t), (2)

dq

dt
(t) = β(p(t))

∫ ∞
0

u(y, t)

∫ y

0
(y − x)k(y, x)dxdy − κq(t), (3)

endowed with initial conditions u(x, 0) = 0, q(0) = 0, and p(0) = p0 > 0, and with the boundary
condition u(0, t) = 0.

The transport term of equation (1) describes the growth of MTs at rate γ(p) which depends on
the free GTP-tubulin concentration, since experiments suggest that MTs undergo periods of growth
that are dependent on this concentration. An example of γ(p), which is similar to growth curves
found in experiment [11], is given by formula (4)
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γ(p) =


0 for p < pc

α(p− pc) for pc < p < p∞,

α(p∞ − pc) for p∞ < p,

(4)

where pc represents the critical concentration required to initiate MT growth, p∞ the saturation
polymer concentration, and the growth rate parameter α > 0.

The main novelty of the model is the assumption that depolymerization occurs instantaneously,
and not at a finite rate. The integral term of equation (1) describes a shortening event. We
consider that such an event has a chance to occur when the fixed rate of hydrolysis γh exceeds
the rate of growth γ(p(t)) of a MT. We assume p∞ large enough so that α(p∞ − pc) > γh, and
then, γ(p) < γh ⇔ p < (γh + αpc)/α := ph. If p falls below the value ph, MTs will have a chance
to shorten. However, if p stays above the value ph, there is no MT shortening. We introduce the
parameter β(p) defined as

β(p) = β∞(1−H(p, ph)), H(p, ph) =
1

2

(
1 + tanh(c(p− ph))

)
, (5)

where β∞ denotes the maximal shortening rate of MTs and H(p, ph) is a smooth approximation
to a heavy-side function. Here, c describes the steepness of the transition between 0 and β∞ (i.e.,
the larger the value of c, the steeper the transition). The fact that the function β is smooth is a
technical assumption that we need in Section 3.

The function k(y, x) from equation (1) represents the rescaled probability that a MT of size y
shortens to a MT of size x < y, where the remainder of the MT completely depolymerizes into
GDP-tubulin dimers. Biological observations (see Figure 2) of such shortening events point out two
different cases: either MTs of length y shorten by an average fixed length x0 [16] and then give rise
to a newborn MT of average length y−x0, or MTs of length y shorten to give rise to newborn MTs
of average fixed size x0. These two cases help define the following two shortening kernels, k0 and
k1, respectively:

k0(y, x) = G(y − x), k1(y, x) = G(x), G(z) =
1

σ
√

2π
exp
−(z − x0)2

2σ2
, x0 > 0, σ > 0. (6)

In Figure 2 (left), we show a single kymograph, illustrating the growth dynamics of a single MT
over time (taken from the experiment of Pagano et al.[16]). A kymograph describes the growth
trajectory of a single MT, and is read from top to bottom. In the experiment [16], all MTs shorten
by approximately the same distance x0. In particular, the shortening distances can be fit to a
Gaussian like k0, where the standard deviation σ is very small. Possible values for x0 and its
standard deviation σ are summarized in Table 1.

The final source term in equation (1), N(p), describes MT nucleation (the birth of a MT). We
assume

N(p) = µpmH(p, pN ), (7)

where H(p, pN ) is defined as in equation (5). In particular, equation (7) states that if the value for
GTP-tubulin (p) falls below the critical nucleation value pN , nucleation is switched off. Here, µ is
called the nucleation parameter and m is linked to the minimum number of GTP-tubulin dimers
required for nucleation. Freshly nucleated MTs have a size between 0 and xmin. The weight ξ(x) is
then defined as
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Figure 3. Measuring microtubule lengths a
Kymograph made from a DIC movie, depic
growth and shrinkage using GMPCPP-stab
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Figure 2: Examples of the growth-fragmentation process. Left: A kymograph showing a MT that shortens by
approximately the same size x0 (the appropriate kernel is k0) Center: A kymograph showing a MT that shortens
to the same size x0 (the appropriate kernel is k1). The experimental conditions underlying these Kymographs are
described in [16]. Right: Schematic representation of the two types of kernels, k1 and k0, respectively.

ξ(x) = CN (1−H(x, xmin)). (8)

Here xmin is defined in Table 1 and CN is a normalization constant that ensures we have the
property ∫ ∞

0
ξ(x) xdx = 1. (9)

Equations (2) and (3) represent the time evolution of GTP and GDP-tubulin, respectively. The
first term in equation (2) describes removal of GTP tubulin due to MT growth, while the second
term describes removal due to nucleation. The final term describes GDP/GTP recycling, where
κ> 0 is the recycling rate of GDP to GTP tubulin. The first term in equation (3) describes all
GDP-tubulin which comes from a shortening event, while the second term accounts for GDP/GTP
recycling.

It can be shown by formal integration that the total mass of the system (1),(2), (3) is preserved.
Specifically, the total amount of tubulin in polymer and free form does not vary with time so that

d

dt

(∫ ∞
0

xu(x, t)dx+ p(t) + q(t)

)
= 0.

It can also be shown that increase in the total number of MTs is only due to nucleation. That
is,

d

dt

(∫ ∞
0

u(x, t)dx

)
= N(p(t))

∫ ∞
0

ξ(x)dx.

3 Well posedness of the PDE model

In this section of the paper, we focus on the well-posedness of the model developed in Section 2.
To avoid cumbersome calculations, we reduce the system defined by equations (1), (2), and (3) to
a system of two equations. In particular, we assume that the exchange rate of GDP-tubulin to
GTP-tubulin is instantaneous, and so we need only to consider the equations for u and p. The
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generalization of the results that follow, to the full system, is straightforward. The PDE model we
consider is written as

∂u(x, t)

∂t
+ γ(p(t))

∂u(x, t)

∂x
= β(p(t))

(
−
∫ x

0
k(x, y)dy u(x, t) +

∫ ∞
x

k(y, x)u(y, t)dy

)
+N(p(t))ξ(x),

(10)
dp

dt
(t) = −γ(p(t))

∫ ∞
0

u(x, t)dx+ β(p(t))

∫ ∞
0

u(y, t)

∫ y

0
(y − x)k(y, x)dxdy −N(p(t)), (11)

u(x, 0) = 0, u(0, t) = 0, p(0) = p0. (12)

A similar system was introduced and developed in the context of Prion proliferation. Global exis-
tence and uniqueness of a global solution was then studied in [10] [22] [20] using semi-group theory.
The main difference between our model and that studied in [10] and [22] are the time-dependence
of the function β and the fact that the fragmentation kernel is not self-similar.

3.1 Assumptions on the parameters

Here, we outline assumptions on model parameters required for our main result. The polymerization
growth rate γ(p) is Lipchitz and bounded so that

0 ≤ γ(p1) ≤ γ∞, |γ(p1)− γ(p2)| ≤ α|p1 − p2|, p1, p2 ∈ R+. (13)

The nucleation density satisfies

ξ ∈ C1(R+),

∫ ∞
0

ξ(x) xdx = 1, Supp(ξ) ⊂ [xξm, x
ξ
M ], Iξ :=

∫ ∞
0

ξ(x) dx <∞, (14)

0 ≤ N(p) ≤ N∞, p ∈ R+. (15)

The rate of fragmentation satisfies

β ∈ L∞(R+) ∩ C1(R+), 0 ≤ β(p) ≤ β∞, p ∈ R+. (16)

All parameters satisfy γ(p) = N(p) = β(p) = 0 for p < 0. The fragmentation rate is bounded such
that ∫ y

0
k(y, x)dx = B(y), B ∈ L∞(R+), (17)

where the kernel k satisfies

k(x, x) = 0, x ∈ R+, k(x, 0) = 0, x ∈ R+, k(x, y) = 0 if x < y, x, y ∈ R+, (18)

and we assume the additional properties∫ y

0
k(y, x)(y − x)dx ≤M0 +M1y,

∫ y

0
|∂1k(y, x)| dx ≤M2,

∫ y

0
|∂2k(y, x)| dx ≤M3. (19)

Two different kernels are considered for application:

k0(y, x) =

{
G0(y − x), y > x,

0, otherwise,
k1(y, x) =

{
G1(x), y > x,

0, otherwise,
(20)

for some G0, G1 ∈ C1C(0,+∞). These two kernels correspond to the experimentally observed cases
illustrated in Figure 2. The kernel k0 satisfies properties (19) with M1 = 0. In the case M1 = 0,
the proof of existence is easier (than when M1 6= 0), thus we treat this case independently. For any
f ∈ L∞(R+) we use the notation f∞ := ‖f‖L∞(R+).
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3.2 Main result

Theorem 1. Under assumptions (13), (14), (15), (16), (17) (18) and (19) , there exists a unique
solution (u, p) ∈ C(R+;L1(R+, (1 + x)dx)) × C(R+) to the system (10) (11). Moreover it satisfies
for all T ≥ 0

0 ≤ p(T ) ≤ p0,
∫

R+

u(x, T )xdx ≤ p0, and

∫
R+

u(x, T )dx ≤ N(p0)T,

and

∫
R+

∣∣∣∂u
∂x

(x, T )
∣∣∣dx ≤ K1T +K2T

2,

for some positive constants K1 and K2 given by

K1 = (xξM − x
ξ
m)N(p0)ξ

′
∞, K2 =

β(p0)

2
N(p0)Iξ(M2 +M3).

Strategy of the proof We build a sequence T0, T1, T2 . . . and prove by induction that the system
(10) (11) admits a unique solution over [0, Tn], and that Tn →∞. To do so, we assume that there
exists a unique solution (u∗, p∗) to the system (10), (11) over [0, Tn]. To extend this solution to
[Tn, Tn+1], we use the Banach fixed point theorem in the Banach space Y = C([Tn, T ]) endowed
with ‖p‖Y = sup

Tn≤t≤T
‖p(t)‖. For a given function p̄ ∈ Y , we define u as the unique solution for t ≥ Tn

and x ≥ 0 to the equation

∂u(x, t)

∂t
+ γ(p̄(t))

∂u(x, t)

∂x
= β(p̄(t))

(
−u(x, t)

∫ x

0
k(x, y)dy +

∫ ∞
x

k(y, x)u(y, t)dy

)
+N(p̄(t))ξ(x),

(21)
u(x, Tn) = u∗(x, Tn), u(0, t) = 0. (22)

For the function u given by equations (21) and (22), we then define p := G[p̄] as the unique solution
satisfying the equation

dp

dt
(t) = −γ(p̄(t))

∫ ∞
0

u(x, t)dx+ β(p̄(t))

∫ ∞
0

u(y, t)

∫ y

0
(y − x)k(y, x)dxdy −N(p̄(t)) (23)

p(Tn) = p∗(Tn), (24)

for t ≥ Tn and x ≥ 0.
We obtain the unique extent (u, p) to the solution (u∗, p∗) of system (10) and (11), over [Tn, Tn+1]

as the unique fixed point to map G for p, and the unique u satisfying (21) and (22) where we replaced
p̄ by p. To make further notation less complicated, we drop the dependence in n for the space Y
and the map G. The sequence of lemmas that follow provide us with the necessary details needed
to extend the solution to [Tn, Tn+1], and provides us with an explicit expression for Tn+1. These
steps will lead us to the desired end result, the proof of Theorem 1. As a first step, we show that
G is well defined.

3.3 The transport-fragmentation equation

For a, b, c ∈ L∞(R+) and Tn > 0 given, we consider the transport-fragmentation equation for x ≥ 0
and t ≥ Tn

∂u(x, t)

∂t
+ a(t)

∂u(x, t)

∂x
= b(t)

(
−u(x, t)

∫ x

0
k(x, y)dy +

∫ ∞
x

k(y, x)u(y, t)dy

)
+ c(t)ξ(x),

u(x, Tn) = u∗(x, Tn), x ≥ 0, u(0, t) = 0, t ≥ Tn.
(25)
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Lemma 1 (Well posedness of (21)). Assume a, b, c ∈ L∞(R+) with a ≥ 0, b ≥ 0, c ≥ 0, then, there
exists a unique solution to (25) in C([Tn,∞), L1(R+)). Moreover, we have the following properties

1. Positivity. If u∗(., Tn) ≥ 0, then u(., t) ≥ 0 for t ≥ Tn.

2. Compact support. If for some M > xξM , supp(u∗(., Tn)) ⊂ [0,M + a∞Tn] (this is true for
Tn = 0), then supp(u(., t)) ⊂ [0,M + a∞t] for t ≥ Tn.

Proof. The proof of Lemma 1 relies on a (second) fixed point argument. For any ū ∈ C(R+, L1(R+))
such that ū ≥ 0, a.e., we define u := F[ū] as the unique solution to

∂u(x, t)

∂t
+ a(t)

∂u(x, t)

∂x
= b(t)

(
−B(x)u(x, t) +

∫ ∞
x

k(y, x)ū(y, t)dy

)
+ c(t)ξ(x),

u(x, Tn) = u∗(x, Tn), x ≥ 0, u(0, t) = 0, t ≥ Tn.
(26)

Step 1. The map F is well defined.
Based on the method of characteristics, we explain why the map F is well defined. The charac-

teristic curves are defined for all time t ≥ Tn as

Ż(t; t0, y0) = a(t), Z(t0; t0, y0) = y0,

and for all (x, t) ∈ R+ × [Tn,+∞), there exists a unique (x0, t0) such that either t0 = Tn, either
x = 0 and such that Z(t; t0, x0) = x. Let us first assume ū ∈ C1(R+ × R+) and u∗(., Tn) ∈ C1(R+).
The function u is a solution to (26) if and only if it satisfies the linear equation

d

dt
u(Z(t; t0, y0), t) =b(t)

(
−B(Z(t; t0, y0))u(Z(t; t0, y0), t) +

∫ ∞
Z(t;t0,y0)

k(y, Z(t; t0, y0))ū(y, t)dy

)
+ c(t) ξ(Z(t; t0, y0)).

There exists a unique global solution u(Z(t; t0, y0), t)) to the linear ODE (3.3) since b, B, k, c and ξ
are continuous and nonnegative. A regularization process gives us the existence of a weak solution
u ∈ C1(R+, L1(R+)) for ū ∈ C1(R+, L1(R+)) and u∗(., Tn) ∈ L1(R+). Moreover, we have u(x, t) ≥
0, a.e.
Step 2. The solution u is compactly supported. Let us assume supp(u∗(., Tn)) ⊂ [0,M +

a∞Tn] and supp(ū(., t)) ⊂ [0,M + a∞t] for t ≥ Tn for some M > xξM . The characteristic curve
passing through a point (x, t) where x > M + a∞t emanates from (x, Tn) where x > M + a∞Tn (or
from (0, t0) for a given t0 ≥ 0). On the characteristic curves emanating from the anchors (x, Tn)

where x ≥ M + a∞Tn ≥ xξM , the solution u is constantly equal to zero (both the initial condition

and source term are zero) . Then, for x > M + a∞t, with M > xξM , we have u(x, t) = 0.
Step 3. The map F is a contraction.

We prove here that F is a contractive map in the Banach space

X = C+([Tn, Tn + T ];L1(R+, dx)), ‖u‖X = sup
Tn≤t≤Tn+T

‖u(t, .)‖L1(R+, dx).

The proof is a straightforward adaptation from [17], page 59. For (ū1, ū2) ∈ X2, we define (u1, u2) ∈
X2 as u1 := F[ū1] and u2 := F[ū2]. The function u = u1 − u2 then satisfies for ū = ū1 − ū2

∂u(x, t)

∂t
+ a(t)

∂u(x, t)

∂x
= b(t)

(
−B(x)u(x, t) +

∫ ∞
x

k(y, x)ū(y, t)dy

)
.
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We multiply the above equation by sign(u), integrate over R+, and intergrate with time to get

‖u‖X ≤ T b∞B∞‖ū‖X ,

which means that as soon as T < 1/(2b∞B∞), F is a strict contraction in the Banach space X
and this proves the existence of a unique fixed point. We can iterate the operator on [Tn + T, Tn +
2T ], [Tn + 2T, Tn + 3T ], . . . . since the condition on T does not depend on the iteration. With this
iteration process, we have built a solution to (26) in C+([Tn,+∞), L1(R+)). Properties 1 and 2 of
lemma 1 are preserved by the map F and are thus true for the fixed point.

The following sequence of Lemmas shows that the map G is a contraction from Y to Y .

Lemma 2 (L1-estimate). Assume a, b, c ∈ L∞(R+). The solution to (25) satisfies for A1 = c∞Iξ∫
R+

u∗(x, Tn)dx ≤ A1Tn implies

∫
R+

u(x, t)dx ≤ A1t, t ≥ Tn.

Proof. We integrate equation (21) over R+ and use the condition at x = 0 and the compact support
property

d

dt

∫
R+

u(x, t)dx = c(t)Iξ ≤ c∞Iξ, t ≥ Tn,

which directly implies Lemma 2 after a time integration.

Lemma 3 (W 1,1 estimate). Assume a, b, c ∈ L∞(R+). Then there are some positive constants A2

and A3 such that if u∗ satisfies the premise of Lemma 2, then the solution to (25) satisfies for t ≥ Tn∫
R+

∣∣∣∣∂u∗∂x
∣∣∣∣ (x, Tn)dx ≤ A2T

2
n +A3Tn implies

∫
R+

∣∣∣∣∂u∂x
∣∣∣∣ (x, t)dx ≤ A2t

2 +A3t,

with

A2 =
1

2
b∞c∞Iξ(M2 +M3), A3 = (xξM − x

ξ
m)c∞ξ

′
∞.

Proof. Let us first differentiate equation (25) with respect to x (on a regularized solution):

∂

∂t

∂u

∂x
(x, t) + a(t)

∂

∂x

∂u

∂x
(x, t) =b(t)

(
− u(x, t)

∂

∂x

∫ x

0
k(x, y)dy −B(x)

∂u

∂x
(x, t)

+
∂

∂x

∫ ∞
x

k(y, x)u(y, t)dy
)

+ c(t)
∂ξ

∂x
(x).

(27)

We notice that, thanks to (18) (19)

∂

∂x

∫ x

0
k(x, y)dy =

∫ x

0
∂1k(y, x)dy,

∂

∂x

∫ ∞
x

k(y, x)u(y, t)dy =

∫ ∞
x

∂2k(y, x)u(y, t)dy,

since k(x, x) = 0. We now formally multiply (27) by sign

(
∂u

∂x
(x, t)

)
(actually, we multiply by a

regularization of sign

(
∂u

∂x
(x, t)

)
and pass to the limit - see [18] for details). From this, we get

∂

∂t

∣∣∣∣∂u∂x
∣∣∣∣ (x, t) + a(t)

∂

∂x

∣∣∣∣∂u∂x
∣∣∣∣ (x, t) = b(t)

(
−B(x)

∣∣∣∣∂u∂x(x, t)

∣∣∣∣− sign

(
∂u

∂x
(x, t)

)
u(x, t)

∫ x

0
∂1k(y, x)dy

+

∫ ∞
x

sign

(
∂u

∂x
(x, t)

)
∂2k(y, x)u(y, t)dy

)
+ c(t) sign

(
∂u

∂x
(x, t)

)
∂ξ

∂x
(x).

9



And, after integration we have

d

dt

∫
R+

∣∣∣∣∂u∂x(x, t)

∣∣∣∣ dx ≤ F1(t) + F2(t) + F3(t) + F4(t) + F5(t),

where, using Lemma 2 for F3 and F5,

F2(t) = −b(t)
∫

R+

B(x)

∣∣∣∣∂u∂x(x, t)

∣∣∣∣ dx ≤ 0,

F3(t) ≤ b(t)
∫

R+

∫ x

0
|∂1k(y, x)||u(x, t)|dydx ≤ b∞M2c∞Iξt,

F5(t) ≤ b(t)
∫

R+

∫ ∞
x
|∂2k(y, x)||u(y, t)|dydx ≤ b∞c∞IξM3t

F6(t) = c(t)

∫
R+

∣∣∣∣∂ξ∂x(x)

∣∣∣∣ dx ≤ c∞(xξM − x
ξ
m)ξ′∞,

and since u(0, t) = 0, writing equation (25) at x = 0 gives us

F1(t) = −a(t)

∣∣∣∣∂u∂x(0, t)

∣∣∣∣ = b(t)

∫ ∞
0

k(y, 0)u(y, t)dy + c(t)ξ(0) = 0.

In summary, we have

d

dt

∫
R+

∣∣∣∣∂u∂x(x, t)

∣∣∣∣ dx ≤ b∞c∞Iξ (M2 +M3) t+ c∞(xξM − x
ξ
m)ξ′∞,

Then, integrating over [Tn, t] we obtain the conclusion of Lemma 3.

Lemma 4 (L1-stability). For (a1, b1, c1) and (a2, b2, c2) two triplets of functions of L∞(R+), if u∗2
satisfies the premise of Lemma 2 and Lemma 3, the associated solutions u1 and u2 to (25) satisfy
for t ≥ Tn∫

R+

|u(x, t)|dx ≤ A4‖a1 − a2‖∞t3 + (A3‖a1 − a2‖∞ +A5‖b1 − b2‖∞) t2 + Iξ‖c1 − c2‖∞t

where

u = u1 − u2, A4 =
A2

3
, A5 = 2B∞c∞Iξ.

Proof. The difference u satisfies

∂u

∂t
(x, t) = −a1(t)

∂u

∂x
(x, t) + (a2(t)− a1(t))

∂u2
∂x

(x, t)

+ b1(t)

(
−B(x)u(x, t) +

∫ ∞
x

k(y, x)u(y, t)dy

)
+ (b1(t)− b2(t))

(
B(x)u2(x, t)−

∫ ∞
x

k(y, x)u2(y, t)dy

)
+ (c1(t)− c2(t))ξ(x).
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Multiplying by sign(u(x, t)) we obtain

∂|u|
∂t

(x, t) ≤− a1(t)
∂|u|
∂x

(x, t) + |a2(t)− a1(t)|
∣∣∣∣∂u2∂x

(x, t)

∣∣∣∣
+ b1(t)

(
−B(x)|u(x, t)|+

∫ ∞
x

k(y, x)|u(y, t)|dy
)

+ |b1(t)− b2(t)|
(
B(x)|u2(x, t)|+

∫ ∞
x

k(y, x)|u2(y, t)|dy
)

+ |c1(t)− c2(t)|ξ(x).

Now, we integrate over R+ and get

d

dt

∫
R+

|u(x, t)|dx ≤|a2(t)− a1(t)|
∫ ∞
0

∣∣∣∣∂u2∂x
(x, t)

∣∣∣∣ dx+ |c1(t)− c2(t)|Iξ

+ |b1(t)− b2(t)|
(∫ ∞

0
B(x)|u2(x, t)|dx+

∫ ∞
0

∫ ∞
x

k(y, x)|u2(y, t)|dydx
)
,

and so

d

dt

∫
R+

|u(x, t)|dx ≤‖a1 − a2‖∞(A2t
2 +A3t) + Iξ‖c1 − c2‖∞ + 2‖b1 − b2‖∞B∞c∞Iξt.

Integrating over time and taking the supremum over t ∈ [Tn, t], we arrive at the conclusion of
Lemma 4.

Lemma 5 (L1(xdx) estimate - only for M1 6= 0). Assume a, b, c ∈ L∞(R+). Then, if u∗ satisfies
the premise of Lemma 2, the solution u to (25) satisfies∫

R+

u∗(x, Tn)xdx ≤ p0 implies

∫
R+

u(x, t)xdx ≤ A6e
A7(t−Tn) +A′6Tne

A7(t−Tn), t ≥ Tn

with

A6 = p0 +
c∞(b∞M1 + Iξa∞ + b∞M0Iξ)

b2∞M
2
1

, A′6 =
c∞Iξ(b∞M0 + a∞)

b∞M1
, A7 = b∞M1.

Proof. We multiply equation (25) by x and integrate over R+ to get

d

dt

∫
R+

xu(x, t)dx = a(t)

∫
R+

u(x, t)dx+ c(t) + b(t)

∫
R+

∫ y

0
k(y, x)(x− y)u(y, t)dxdy

which implies

d

dt

∫
R+

xu(x, t)dx ≤ a∞c∞Iξt+ c∞ + b∞

(
M0c∞Iξt+M1

∫
R+

xu(x, t)dx

)
.

The solutions to the ODE g′(t) = r + st+ wg(t) are written

gC(t) = Cewt − rw + 1

w2
− s

w
t,

then, the solutions f to
f ′(t) ≤ r + st+ wf(t), f(Tn) ≤ p0,
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satisfy for any C ∈ R (Gronwall Lemma)

f(t) ≤ gC(t) + (f(Tn)− gC(Tn))ew(t−Tn).

Thus, if we take C such as gC(Tn) = p0, i.e. C =

(
p0 +

rw + s

w2

)
e−wTn +

s

w
Tne

−wTn we have

f(t) ≤ Cewt, which leads to Lemma 5.

Lemma 6 (W 1,1(xdx) estimate - only for M1 6= 0). Assume a, b, c ∈ L∞(R+). If u∗ satisfies the
premise of Lemma 2 and Lemma 5, and if∫

R+

∣∣∣∣∂u∗∂x (x, Tn)

∣∣∣∣xdx ≤ A9Tn +A10T
2
n +A11T

3
n ,

then the solution to (25) satisfies∫
R+

∣∣∣∣∂u∂x(x, t)

∣∣∣∣xdx ≤ A8e
A7(t−Tn) +A9t+A10t

2 +A11t
3 +A12Tne

A7(t−Tn), t ≥ Tn.

with

A8 =
b∞A6(M2 +M3)

A7
, A9 = c∞(xξM − x

ξ
m)xξMξ

′
∞, A10 = a∞

A3

2
, A11 = a∞

A2

3
, A12 = β∞A

′
6.

Proof. Let us differentiate equation (25) with respect to x and multiply the result by x sign

(
∂u

∂x
(x, t)

)
.

This gives

∂

∂t
x

∣∣∣∣∂u∂x
∣∣∣∣ (x, t) + a(t)x

∂

∂x

∣∣∣∣∂u∂x
∣∣∣∣ (x, t) = b(t)

(
− xB(x)

∣∣∣∣∂u∂x(x, t)

∣∣∣∣− x ∫ x

0
∂1k(x, y)dy sign

(
∂u

∂x
(x, t)

)
u(x, t)

+ sign

(
∂u

∂x
(x, t)

)
x

∫ ∞
x

∂2k(y, x)u(y, t)dy
)

+ c(t) sign

(
∂u

∂x
(x, t)

)
x
∂ξ

∂x
(x).

After integration and using the same kind of estimates as those used for Lemma 3, we have and
using Lemma 5,

d

dt

∫
R+

x

∣∣∣∣∂u∂x(x, t)

∣∣∣∣ dx ≤ b∞A6(M2 +M3)e
A7t + a∞(A2t

2 +A3t) + c∞(xξM − x
ξ
m)xξMξ

′
∞

and the conclusion of Lemma 6 follows after time integration.

Lemma 7 (L1(xdx)-stability- only for M1 6= 0). For (a1, b1, c1) and (a2, b2, c2) two triplets of
functions of L∞(R+), the associated solutions u1 and u2 to (25) satisfy∫

R+

x|u(x, t)|dx ≤ A13e
A7(t−Tn) +A14t, t ≥ Tn,

where

A13 =
1

A7
+

v

A2
7

+
2y

A3
7

+
6z

A4
7

, A14 = (M1 + 2B∞)‖b1 − b2‖∞A6,

v = (A3‖a1 − a2‖∞ +M0Iξc∞‖b1 − b2‖∞ +M0Iξb∞‖c1 − c2‖∞),

y = M0((A2 +A3)‖a1 − a2‖∞ +A5‖b1 − b2‖∞),

z = M0A4‖a1 − a2‖∞.
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Proof. We multiply the equation (3.3) (satisfied by u) by x sign(u(x, t)) and we integrate it over R+

so that

d

dt

∫
R+

x|u(x, t)|dx ≤ −a1(t)
∫

R+

x
∂|u|
∂x

(x, t)dx+ |a1(t)− a2(t)|
∫

R+

x

∣∣∣∣∂u2∂x
(x, t)

∣∣∣∣ dx
+ b1(t)

∫
R+

∫ x

0
(x− y)k(x, y)|u(x, t)|dx+ |c1(t)− c2(t)|

∫
R+

xξ(x)dx

+ (b1(t)− b2(t))
∫

R+

∫ x

0
k(x, y)(x sign(u(x, t))− y sign(u(y, t)))u2(x, t)dx.

Then,

d

dt

∫
R+

x|u(x, t)|dx ≤ b∞M1︸ ︷︷ ︸
A7

∫
R+

x|u(x, t)|dx+ ‖c1 − c2‖∞ + t3M0A4‖a1 − a2‖∞

+ t2M0((A2 +A3)‖a1 − a2‖∞ +A5‖b1 − b2‖∞)

+ t(A3‖a1 − a2‖∞ +M0Iξc∞‖b1 − b2‖∞ +M0Iξb∞‖c1 − c2‖∞)

+ (M1 + 2B∞)‖b1 − b2‖∞A6e
A7t, t ∈ [Tn, Tn + T ].

A function satisfying f ′(t) ≤ u+ vt+ yt2 + zt3 +mew(t−Tn) +m′Tne
w(t−Tn) +wf(t) with f(Tn) = 0

satisfies f(t) ≤
(

1

w
+

v

w2
+

2y

w3
+

6z

w4

)
ew(t−Tn) +mt, and we obtain Lemma 7.

Lemma 8 (A-priori estimate for the solution). Let us assume that there exists a solution (u, p) ∈
C(R+;L1(R+, (1 + x)dx)) × C(R+) to the system (10), (11) with boundary conditions (12) for t ∈
[0, Tn] for some given Tn ≥ 0. Then, it satisfies

0 ≤ p(t) ≤ p0,
∫

R+

u(x, T )xdx ≤ p0, and

∫
R+

u(x, T )dx ≤ N(p0)IξT, for T ≥ 0. (28)

and

∫
R+

∣∣∣∂u
∂x

(x, T )
∣∣∣dx ≤ K1T +K2T

2, for T > 0, (29)

for some positive constants K1 and K2 given by

K1 = (xξM − x
ξ
m)N(p0)ξ

′
∞, K2 =

β(p0)

2
N(p0)Iξ(M2 +M3).

Proof. The proof of (29) is a direct application of Lemma 3.

3.4 The map G is a contraction

We now show that G is a contractive map.

Lemma 9 ( Estimate for ‖p‖Y ). We fix Tn ≥ 0. For a couple of functions (p̄1, p̄2) ∈ Y 2, we define
p1 = G[p̄1], p2 = G[p̄2], p̄: = p̄1 - p̄2 and p: = p1 - p2, where the initial conditions p∗1, p∗2, u∗1 and
u∗2 are solutions to (10), (11), (12) over [0, Tn]. (We recall that Y and G depend on Tn.) Then we
have

1. In the case M1 = 0,

‖p‖Y ≤ T
(
A15(Tn + T )3 +A16(Tn + T )2 +A17(Tn + T ) +A18

)
‖p̄‖Y .
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2. In the case M1 6= 0,

‖p‖Y ≤ T
(
A15(Tn + T )3 +A16(Tn + T )2 + Ã17(Tn + T ) +A18 +A19e

A7(Tn+T )
)
‖p̄‖Y ,

where

A15 = (β∞M0 + γ∞)A4α, A16 = (β∞M0 + γ∞)(A3α+A5β
′
∞),

A17 = N ′∞Iξ(β∞M0 + γ∞) +N∞Iξ(α+ β′∞M0),

Ã17 = A17 +M1β∞A12, A18 = N ′∞, A19 = M1(β
′
∞A6 + β∞A13), Ã19 = M1β

′
∞A

′
6.

Proof. We denote by ui the unique solution of (21) with p̄ = p̄i. We define u := u1 − u2. We have

dp

dt
(t) =− γ(p̄1(t))

∫
R+

u(x, t)dx− (γ(p̄1(t))− γ(p̄2(t)))

∫
R+

u2(x, t)dx

+ β(p̄2(t))

∫
R+

u(y, t)

(∫ y

0
(y − x)k(y, x)dx

)
dy

+ (β(p̄1(t))− β(p̄2(t)))

∫
R+

u1(y, t)

(∫ y

0
(y − x)k(y, x)dx

)
dy

+N(p̄1(t))−N(p̄2(t)), t ∈ [Tn, Tn + T ],

which after integration over [Tn, t] for t ∈ [Tn, Tn + T ] gives us

|p1(t)− p2(t)| ≤
∫ t

Tn

γ(p̄1(s))

∫
R+

|u(x, s)|dxds+ α

∫ t

Tn

|p̄1(s)− p̄2(s)|
∫

R+

u2(x, s)dxds

+ β∞

∫ t

Tn

∫
R+

|u(y, s)|
(∫ y

0
(y − x)k(y, x)dx

)
dy

+ β′∞

∫ t

Tn

|p̄1(s))− p̄2(s)|
∫

R+

|u2(y, s)|
(∫ y

0
(y − x)k(y, x)dx

)
dyds

+N ′∞

∫ t

Tn

|p̄1(s)− p̄2(s)|ds, t ∈ [Tn, Tn + T ].

We take the supremum over [Tn, Tn + T ] on both sides such that

‖p‖Y ≤ T‖p̄‖Y

(
N ′∞ +

∫
R+

(β′∞(M0 +M1x) + α) sup
t∈[Tn,Tn+T ]

|u2(x, t)| dx

)

+ T

(∫
R+

(γ∞ + β∞(M0 +M1x)) sup
t∈[Tn,Tn+T ]

|u(x, t)|dx

)
.

We now use the previous Lemmas that we apply for

a∞ = γ∞, b∞ = β∞, c∞ = N∞, ‖a1 − a2‖∞ = α‖p̄‖Y , ‖b1 − b2‖∞ = β′∞‖p̄‖Y , ‖c1 − c2‖∞ = N ′∞‖p̄‖Y .

We distinguish two cases. First, we consider M1 = 0. Using Lemma (8), we have∫
R+

u2(x, Tn)dx =

∫
R+

u∗2(x, Tn)dx ≤ N(p0)IξTn,

so that Lemma (2) implies∫
R+

u2(x, t)dx ≤ N∞Iξ(Tn + T ), t ∈ [Tn, Tn + T ].
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Since ∫
R+

∣∣∣∣∂u2∂x
(x, Tn)

∣∣∣∣ dx =

∫
R+

∣∣∣∣∂u∗2∂x
(x, Tn)

∣∣∣∣ dx ≤ K1Tn +K2T
2
n ≤ A2T

2
n +A3Tn,

we can apply Lemma 4 and obtain

‖p‖Y ≤ T‖p̄‖Y
(
N ′∞ + (Tn + T )(N ′∞Iξ(β∞M0 + γ∞) +N∞Iξ(α+ β′∞M0))

+ (Tn + T )2(β∞M0 + γ∞)(A3α+A5β
′
∞) + (Tn + T )3(β∞M0 + γ∞)A4α

)
which leads to the conclusion of the first item of Lemma 9. For the case M1 6= 0, Lemma 8 implies
that ∫

R+

xu(x, Tn)dx ≤ p0

so that we can apply Lemma 5. We also use Lemma 7 and we obtain

‖p‖Y ≤ T‖p̄‖Y
(
N ′∞ + (Tn + T )(N ′∞Iξ(β∞M0 + γ∞) +N∞Iξ(α+ β′∞M0) + β∞M1A14)

+ (Tn + T )2(β∞M0 + γ∞)(A3α+A5β
′
∞) + (Tn + T )3(β∞M0 + γ∞)A4α

+M1(β
′
∞M1(A6 +A′6Tn) + β∞A13)e

A7T
)

which ends the proof of Lemma 9.

The next Lemma is the last Lemma required for the proof of Theorem 1.

Lemma 10. We can build a sequence T0 = 0, T1, . . . , Tn, Tn+1, . . . such that

1. For all n ∈ N, there exists a unique solution to system (10) (11) for t ∈ [0, Tn],

2. lim
n→∞

Tn = +∞.

Proof. Let us assume that (u∗, p∗) is a solution to system (10) (11) for t ∈ [0, Tn]. For the couple
of functions (p̄1, p̄2) ∈ Y 2, we define p1 = G[p̄1] and p2 = G[p̄2]. Lemma 9 gives us

‖G[p̄1]−G[p̄2]‖Y ≤ T
(
A15(Tn + T )3 +A16(Tn + T )2 + Ã17(Tn + T ) +A18 +A19e

A7T

+ Ã19Tne
A7T
)
‖p̄1 − p̄2‖Y ,

(30)

where the A′is are those defined in Lemma 9. The map G is a strict contraction provided that the
sum in (30) is strictly less than 1, which is implied by the fact that each of the 6 terms is strictly
less than 1/6. As a consequence, the map G is a strict contraction over [Tn, Tn + T ] as soon as T
satsifies the 5 following conditions:

T <
1

6A18
=: G1(Tn), T <

1

6Ã17

(
Tn +

1

6A18

) =: G2(Tn), T <
1

6A16

(
Tn +

1

6A18

)2 =: G3(Tn),

T <
1

6A15

(
Tn +

1

6A18

)3 =: G4(Tn), T <
1

A19
e
−A7

(
Tn+

1

6A18

)
=: G5(Tn),

T <
1

A19Tn
e
−A7

(
Tn+

1

6A18

)
=: G6(Tn).

15



Then, the Banach fixed point theorem guarantees that we can extend the solution to [Tn, Tn + T ].
The sequence defined by induction through

T0 = 0, Tn+1 = Tn + min{G1(Tn), G2(Tn), G3(Tn), G4(Tn), G5(Tn), G6(Tn)},

is diverging, since it is strictly increasing and the application x→ x+min{G1(x)+G2(x)+G3(x)+
G4(x) +G5(x) +G6(x)} has no fixed point.

4 Numerical results

In this section, we describe results of the numerical simulation of equations (1), (2), and (3). First,
we outline the numerical details of our approach. Then, we illustrate the behavior of our model by
running a variety of simulations. In particular, we show how variations in certain model parameters
change the qualitative and quantitative behavior of solutions. Such exploration gives us a better
idea as to which parameters might be influenced by the addition of MTAs into a system of growing
MTs. We simulate our model using a finite difference method. For the advection terms in equation
(1) we use an upwinding approach, and an explicit Euler strategy for the ODEs (2) and (3). All
integral terms are calculated using an order 0 quadrature method, adjusted to preserve tubulin at
the discrete level.

All simulations are implemented in Matlab using custom code. We discretize our domain into
100 grid points, where the distance between each grid point, ∆x, is constant and equal to 0.2µm.
Thus, our domain is 10 µm in length. As we are only considering short time simulations, this domain
size is appropriate (i.e., MTs do not grow larger than this size). Also, we choose an appropriate time
step so that our scheme satisfies the CFL condition [25]. Our time step, ∆t, equals 0.001 seconds.

4.1 Parameter values in the base case

Table 1: Table of model parameters
Model parameter Description value

α growth parameter 2 µm
M·min

γh Baseline hydrolysis rate 5 µm
min

β∞ Shortening rate 20 µm
min

x0 Shortening distance 1.6 µm

σ Standard deviation of x0 0.2 µm

µ Nucleation rate 0.1 1
M·min

m Dimer nucleation number 2

CN Normalization constant (from equation (8)) CN 1/4

xmin Maximal size of nucleated MTs 0.8 µm

κ GDP/GTP-tubulin exchange rate 2 1
min

pc Critical growth value 2 µM

pN Critical nucleation value 12 µM

p0 Initial GDP concentration 15 µM

ph Critical fragmentation value 4.5 µM

Our base case parameters for the numerical simulations are summarized in Table 1. For some
model parameters, their order of magnitude was determined from the literature. In particular, the
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hydrolysis rate is found in [4], the shortening rate β∞ in [23], the dimer nucleation number m in
[19], and the GDP/GTP-tubulin exchange rate κ in [23]. Other parameters were estimated through
discussions with biologists [8]. The purpose of simulations is to provide insight into the qualitative
behavior of our system for realistic model parameters, not to provide quantitative results.

4.2 Simulation results in the base case

We first describe simulation output that can be compared with experimental data.
One quantity of interest is the average MT length (i.e., the total amount of tubulin in polymer

form). This average, between Tmin and Tmax, is defined as

ūtot =
1

Tmax − Tmin

∫ Tmax

Tmin

utot(t)dt, utot(t) =

∫ ∞
0

u(x, t)xdx,

where Tmin is the time at which the first GTP-tubulin population begins to stabilize (we will describe
this in more detail later in this section), Tmax is the maximum time of simulation, and utot(t) is the
total tubulin in polymerized form at time t.

Similarly, we can write the mean MT growth rate as

γ̄ =
1

Tmax − Tmin

∫ Tmax

Tmin

γ (p(t)) dt.

This quantity can be estimated experimentally using data collected from kymographs (recall Figure
2).

In many of the existing models used to describe MT dynamic instability, information regarding
MT growth and shortening, as well as the frequencies of switching between states of growing and
shortening, are fixed parameters [3]. In particular, these parameters are required as model input for
the simulation of MT dynamics. In experiments, these parameters are observables, and can vary
depending on the conditions of the system. Our model is different from other models, as we only
require information about how MTs shorten and grow. The frequency of switching between growing
and shortening states, as well as the mean MT growth rate, cannot be determined exactly from
the outputs of our model. However, we suggest a way to roughly estimate these quantities. The
frequency of switching between growth and shortening is referred to as the catastrophe frequency
(fc), while the frequency of switching between shortening and growth is referred to as the rescue
frequency (fr). Using the common definitions described in Walker et al. [23] we write,

fc =
number of catastrophe events

total time spent growing
and fr =

number of rescue events

total time spent shrinking
.

We assume that at locations where the function utot(t) attains an extremum, a catastrophe or a
rescue occurs. We define a sequence of times T1, T2, ....TK , as times at which maxima (catastrophe)
and minima (rescues) occur, where M denotes the total number of catastrophe events and N the
total number of rescue events (M +N = K). MTs start growing from zero length at time T0, thus
T1 necessarily corresponds to the time of the first catastrophe event. Further, since a catastrophe
is always followed by a rescue (and vice versa), the following definitions precisely describe the
catastrophe and rescue frequencies:

fc =
M − 1∑M−1

i=1 [T2i+1 − T2i]
and fr =

N∑N
i=1[T2i − T2i−1]

. (31)

Here, we do not include the first period of growth (T1 − T0) into our definition for total time
spent growing, as it is during this time that freshly nucleated MTs are introduced into the system.
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A comparison between the prediction of our model in the base case and the outputs of exper-
iments performed by the group of Honoré et al. [16] is displayed in Table 2. Note that for this
particular experiment, there was no information for total polymer concentration utot.

Table 2: Table of model output for k0 compared with experiment

fc fr ūtot γ̄ Time spent shortening
Units min−1 min−1 µM µm

min percent
Model ouput 2.38 9.17 7.9 5.2 28
Experimental output 2.57 7.12 N/A 12.176 ± 7.8 25.21
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Figure 3: Left: Example of oscillating populations of tubulin found in MTs, free GTP-tubulin, and free GDP-
tubulin. Parameters used are summarized in Table 1. Shortening kernel k0 is used. Right: Extended simulation of
the figure to the left. MT dynamic instability is only sustained over a relatively short period of time. For large time,
MT dynamics are completely suppressed.

Figures 3 (Left) and (Right) illustrate oscillating populations of tubulin in polymer form as well as
oscillating populations of free GTP- and GDP-tubulin using the base case model parameters given
in Table 1. In Figure 3 (Left), we highlight catastrophe and rescue events by red dots and blue
dots, respectively. Also, examples of shortening and growing time periods are highlighted. Using
Figure 3 (Left), we calculate values for fc and fr using formulas (31), and the mean MT length
ūtot and growth rate γ̄, using formulas (4.2) and (4.2), where Tmin is set to T1 (the time of the
first catastrophe event). From Figure 3 (Left), we see that at T1 the GTP-tubulin concentration
approaches a mean value which is close in value to ph.

Functions of the system (1) , (2), and (3) that depend on the value of p include the nucleation
rate N(p), the shortening rate β(p), and the growth rate γ(p). Recall that, the critical nucleation
value pN = 12µM, the critical growth value pc = 2µM and the critical fragmentation value ph =
γh + αpc

α
= 4.5µM. At time t = 0, p = 15µM, thus N(p) > 0, β(p) = 0 and γ(p) > 0: new

microtubules are formed by nucleation and they grow so that the total mass of microtubules increases
and p decreases. At time t = 0.1, p goes below the critical nucleation value pN ; from that point,
nucleation stops, which slows down the creation of polymerized tubulin. At time t = 0.8, p reaches
the critical value ph and fragmentation is initiated: microtubules start to shorten, and free GDP-
tubulin (q) is created. We notice that the amplitude of the oscillations, as well as the period of
oscillation, decrease with time. This result suggests that MT dynamic instability may only be
sustained over a relatively short period of time. Figure 3 (right) illustrates the dynamics of MTs
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over a ten minute time period.

4.3 Comparison between k0 and k1: a closer look at shortening distance x0 and
shortening rate β∞

In this section, we show simulation results for system (1), (2), and (3). For the different shortening
kernels, k0 and k1, described in equation (6), we will compare long-term tubulin concentrations, as
well as long-term MT length distributions.
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Figure 4: Examination of tubulin concentrations for varying x0 and ki.

Figures 4 and 5, illustrate MT tubulin concentrations for varying shortening distance x0 and
varying shortening rate β∞, respectively. Here, we note that short-term dynamics differ for differing
values of x0 and β∞ for kernel k0, but not for k1. Further, we note the long-term dynamics (i.e.,
the steady-state values of GTP-tubulin, GDP-tubulin, and total tubulin in polymer form) remain
the same in all cases, regardless of the shortening distance x0, rate β∞, or kernel ki used (result
shown in panels (c) and (f) of Figures 4 and 5.)
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Figure 5: Examination of tubulin concentrations for varying β∞ and ki.

Figures 6 and 7 show the temporal evolution of the MT length distributions for varying short-
ening distance x0 and varying shortening rate β∞, respectively. Figures 6(c) and (f) illustrate the
long-term (steady-state) MT length distributions. From these figures, we see that larger values of
x0, result in distributions with higher numbers of shorter MTs. This result makes sense, as MTs
undergo larger shortening events for higher values of x0. Unlike these results, Figures 7(c) and (f)
illustrate that steady-state MT length distributions are very close for each ki, regardless of the value
of β∞ used.

4.4 Dependence of γh and κ on MT dynamics: insight into drug effects

In this section, we show how variations in certain model parameters change the total polymerized
tubulin (MT length), and in some cases we also show how these parameter variations change the
GTP-tubulin concentration. We do so, as this information will provide insight into which parameters
may be altered by the introduction of stabilizing and destabilizing drugs. At low doses, destabiliz-
ing MTAs [26] promote catastrophe and reduce polymer mass, whereas at high doses, destabilizing
MTAs [26] suppress MT dynamics, and MTs completely depolymerize. At almost all doses, stabi-
lizing MTAs promote MT polymerization and stabilization, i.e., MT catastrophe is suppressed, and
polymer tubulin concentration is increased.

Dependence to the hydrolysis rate γh. Figure 8 corresponds to simulation results for
changes in the hydrolysis rate from the base case value (see Table 1 ). Here, we increase and
decrease the critical fragmentation value, ph, from it’s base case value of 4.5 . This is equivalent to
increasing/decreasing the hydrolysis rate γh.

From Figure 8(left) , we see a decrease in the mean polymer density ūtot for increasing hydrolysis
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Figure 6: Examination of polymer length distribution for varying x0 and ki. In (c) and (f) the blue curves correspond
to x0 = 0.4µm. For each ki, the long-time length distribution is different, depending on the value of x0.

rate. Further, we see that decreases in the hydrolysis rate (from the base case) work to suppress
MT dynamics by reducing the number of catastrophe events. These results are consistent with the
action of MT destabilizing (vinblastine or vincristine [26]) and stabilizing (taxol [26]) MT targeting
agents (MTAs), respectively. Thus, we suggest that MT destabilizing MTAs may regulate MT
dynamics by increasing the hydrolysis rate, and that MT stabilizing MTAs may work to increase
MT polymerization through reduction of the hydrolysis rate.

Figure 8(right) shows the corresponding changes in the GTP-tubulin concentration. Here, it
is noted that as the hydrolysis rate γh is increased, the level of free GTP-tubulin in the system is
increased. This result makes sense, due to the fact that as a MT depolymerizes (at high values of
the hydrolysis rate), free tubulin is released back into the system.

Dependence to the recycling rate κ. Next, we show results for variations in the GDP/GTP
recycling rate κ. Figure 9(left) illustrates the results of these variations. Here, we see that an
increase in κ, from the base case value of 2, corresponds to an increase in the MT polymer density
ūtot, which is also true of the action of a MT stabilizing drug. From a biological point of view,
this result makes sense. In particular, if we increase κ, we increase the rate at which free GTP-
tubulin is produced, which in turn promotes MT growth, similar to the action of a stabilizing
MTA. Alternatively, if we decrease κ from the base case value, we inhibit MT dynamics and MTs
depolymerize at low values of κ. This result is consistent with the action of a MT destabilizing
drug.

Figure 9(right) illustrates the changes in the GTP-tubulin concentration as κ is varied. Here,
it is noted that as κ is increased, the level of free GTP-tubulin in the system does not change
significantly. Thus, the GTP-tubulin is being incorporated back into the growing MTs at a faster
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Figure 7: Examination of polymer length distribution for varying β∞ and ki. For each ki, the long-time length
distribution is the same, regardless of the choice of β∞.

rate. Again, this promotion of polymerization is a characteristic of a MT stabilizing drug.

4.5 Asymptotic behaviour

In this paragraph, we consider a fragmentation kernel of type k0 (equation (20)) with σ = 1 and all
the parameters given in Table 1 except for ph = 6 and the initial condition. All the plots displayed
on Figure 10 are obtained for p0 = 11, q0 = 0, and four different initial size distributions IC1:
u0(x) = u5,10(x), IC2: u0(x) = u5,10(x) + u10,10(x), IC3: u0(x) = u10,1(x), IC4: u0(x) = u5,1(x),
where

uxc,σ(x) = exp

(
−(x− xc)2

σ

)
,

and all the initial profiles being rescaled to satisfy
∫

R+ xu0(x)dx = 1. The numerical results suggest
that the system relaxes toward an equilibrium state, i.e. that p and q converges toward some
limiting values p∗ and q∗, and that the size distribution u(x, t) converges toward an asymptotic
profile u∗(x). The limiting value for p is p∗ = ph and the value for q∗ (see Figure 10, upper left)
and then the asymptotic profile u∗ both depend on the initial distribution u0 (see Figure 10, upper
right and Figure 11). The initial value p0 is small enough so that there is no nucleation at time
t = 0, and the numerical simulations show that the value of p(t) always stay below the threshold
that triggers nucleation. As a consequence, the total number of polymers

∫
R+ u(x, t)dx is preserved

over time. The initial number of polymers is closed for IC1 and IC4 (respectively 0.197 and 0.2),
and stay close for all time. Since at the beginning of the dynamic, fragmentation is turned off (i.e.
p(t) ≥ ph, see Figure 10, upper left) the evolution of the system (u, p, q) only depends on p(t), q(t)
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Figure 8: Left: Changes in polymerized tubulin due to variations in the hydrolysis rate. Right: Variation of the
free GDP-tubulin p(t) with respect to ph.
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Figure 9: Left: Changes in polymerized tubulin due to variations in the the recycling rate κ. Right: Variation of
the free GDP-tubulin p(t) with respect to κ.

and
∫

R+ u(x, t)dx (see system (1)(2)(3)) which explains why the time evolution of the macroscopic
quantities for IC1 and IC4 are almost superimposed (Figure 10, upper left).

5 Conclusions and perspectives

In this paper, we have developed a novel integro-PDE modeling approach to describe MT dynamic
instability. Using parameter values taken from the literature, we are able to simulate MT dynamics
that are consistent with experiment. Further, through parameter variation, we are able to describe
possible mechanisms for how destabilizing and stabilizing MTAs work to alter MT dynamics.

It would be interesting in future investigations to determine alternate mechanisms for how MTAs
alter MT dynamics. Also, it would be interesting for biological applications to extend our model in
such a way as to produce stable limit cycles (or oscillations that persist for longer periods of time).
Then, because we consider a MT shortening event to occur at the time when the hydrolysis rate
and the growth rate are equal, we are simplifying what is happening in real systems. In particular,
in real systems MTs grow through the addition of GTP-tubulin. Once GTP-tubulin is incorporated
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Figure 10: Upper left: Time evolution of the macroscopic quantities p(t), q(t) and the mass
∫

R+ xu(x, t)dx for
different initial size distributions u0, IC1: cyan, IC2: pink, IC3: red and IC4: green. Upper right: Four different
initial size distributions u0. On the four other plots are drawn the time evolution of the size distribution u until it
reaches equilibrium.

into the MT, it is hydrolyzed to lower energy GDP-tubulin, creating a distinct GTP region at the
front of a MT which we call the “cap”. When the hydrolysis rate is larger than the growth rate,
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Figure 11: Asymptotic size distribution for the microtubules, for different initial size distributions u0.

the MT cap (which we do not account for in this model) shortens. Once it disappears, then a
shortening event occurs. In this modelling framework, we could account for this by incorporating a
time delay at the moment in time when the hydrolysis rate becomes greater than the MT growth
rate. The understanding of relaxation toward equilibrium of such systems is also a topic of interest
and a future mathematical study will be carried out in that direction.
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