M. T. Alkowatly, V. M. Becerra, and W. Holderbaum, Body-centric modelling, identification, and acceleration tracking control of a quadrotor UAV, International Journal of Modelling, Identification and Control, vol.24, issue.1, pp.29-41, 2015.
DOI : 10.1504/IJMIC.2015.071697

N. Ancona and T. Poggio, Optical flow from 1D correlation: Application to a simple time-to-crash detector, 1993 (4th) International Conference on Computer Vision, pp.209-214, 1993.
DOI : 10.1109/ICCV.1993.378218

A. Argyros, D. Tsakiris, and C. Groyer, Biomimetic centering behavior, IEEE Robotics & Automation Magazine, vol.11, issue.4, pp.21-30, 2004.
DOI : 10.1109/MRA.2004.1371612

S. B. Badia, U. Bernardet, and P. F. Verschure, Non-linear neuronal responses as an emergent property of afferent networks: a case study of the locust lobula giant movement detector, PLoS Comput. Biol, vol.6, 2010.

E. Baird, M. V. Srinivasan, S. Zhang, and A. Cowling, Visual control of flight speed in honeybees, Journal of Experimental Biology, vol.208, issue.20, pp.3895-3905, 2005.
DOI : 10.1242/jeb.01818

E. Baird, M. V. Srinivasan, S. Zhang, R. Lamont, and A. Cowling, Visual Control of Flight Speed and Height in the Honeybee, pp.40-51, 2006.
DOI : 10.1007/11840541_4

E. Baird, T. Kornfeldt, and M. Dacke, Minimum viewing angle for visually guided ground speed control in bumblebees, Journal of Experimental Biology, vol.213, issue.10, 2010.
DOI : 10.1242/jeb.038802

URL : http://jeb.biologists.org/content/jexbio/213/10/1625.full.pdf

E. Baird, N. Boeddeker, M. R. Ibbotson, and M. V. Srinivasan, A universal strategy for visually guided landing, Proc. Natl. Acad. Sci. 110, 2013.
DOI : 10.1098/rstb.1980.0089

URL : http://www.pnas.org/content/110/46/18686.full.pdf

G. Baratoff, C. Toepfer, and H. Neumann, Combined space-variant maps for optical-flow-based navigation, Biological Cybernetics, vol.83, issue.3, 2000.
DOI : 10.1007/s004220000164

URL : http://www.informatik.uni-ulm.de/ni/mitarbeiter/GBaratoff/MyPublications/BiolCyb.ps.gz

A. Barron and M. V. Srinivasan, Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.), Journal of Experimental Biology, vol.209, issue.5, pp.978-984, 2006.
DOI : 10.1242/jeb.02085

G. Barrows, C. Neely, and K. Miller, Optic flow sensors for MAV navigation In: Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, pp.557-574, 2001.

R. D. Beer, H. J. Chiel, R. D. Quinn, and R. E. Ritzmann, Biorobotic approaches to the study of motor systems, Current Opinion in Neurobiology, vol.8, issue.6, pp.777-782, 1998.
DOI : 10.1016/S0959-4388(98)80121-9

A. Beyeler, J. Zufferey, and D. Floreano, 3D Vision-based Navigation for Indoor Microflyers, Proceedings 2007 IEEE International Conference on Robotics and Automation, pp.1336-1341, 2007.
DOI : 10.1109/ROBOT.2007.363170

URL : http://infoscience.epfl.ch/record/89719/files/icra07_enlil_final.pdf

A. Beyeler, J. Zufferey, and D. Floreano, Vision-based control of near-obstacle flight, Autonomous Robots, vol.21, issue.14, pp.201-219, 2009.
DOI : 10.1201/9781439808115

URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.170.7058&rep=rep1&type=pdf

N. Boeddeker, L. Dittmar, W. Stürzl, and M. Egelhaaf, The fine structure of honeybee head and body yaw movements in a homing task, Proceedings of the Royal Society B: Biological Sciences, vol.92, issue.7, 2010.
DOI : 10.1073/pnas.92.7.3029

A. Borst and J. Haag, Neural networks in the cockpit of the fly, J. Comp. Physiol. A, vol.188, pp.419-437, 2002.

A. Borst and M. Helmstaedter, Common circuit design in fly and mammalian motion vision, Nature Neuroscience, vol.40, issue.8, 2015.
DOI : 10.1111/ejn.12731

R. Carelli, C. Soria, O. Nasisi, and E. Freire, Stable AGV corridor navigation with fused vision-based control signals, IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, pp.2433-2438
DOI : 10.1109/IECON.2002.1185354

A. Censi, A. D. Straw, R. W. Sayaman, R. M. Murray, and M. H. Dickinson, Discriminating External and Internal Causes for Heading Changes in Freely Flying Drosophila, PLoS Computational Biology, vol.20, issue.2, 2013.
DOI : 10.1371/journal.pcbi.1002891.s002

URL : http://doi.org/10.1371/journal.pcbi.1002891

J. Chahl, M. Srinivasan, and S. Zhang, Landing Strategies in Honeybees and Applications to Uninhabited Airborne Vehicles, The International Journal of Robotics Research, vol.23, issue.2, pp.101-110, 2004.
DOI : 10.1177/0278364904041320

T. Collett and L. Harkness, Depth vision in animals, Anal. Vis. Behav, vol.111, issue.176, 1982.

J. Conroy, G. Gremillion, B. Ranganathan, and J. S. Humbert, Implementation of wide-field integration of optic flow for autonomous quadrotor navigation, pp.189-198, 2009.

D. Coombs and K. Roberts, Bee-bot: using peripheral optical flow to avoid obstacles, In: Intelligent Robots and Computer Vision XI SPIE, vol.1825, pp.714-721, 1992.
DOI : 10.1117/12.131575

G. C. De-croon, Monocular distance estimation with optical flow maneuvers and efference copies: a stability-based strategy, Bioinspiration & Biomimetics, vol.11, issue.1, 2016.
DOI : 10.1088/1748-3190/11/1/016004

A. Dev, B. Krose, and F. Groen, Navigation of a mobile robot on the temporal development of the optic flow, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97, pp.558-563
DOI : 10.1109/IROS.1997.655067

A. P. Duchon and W. H. Warren, A Visual Equalization Strategy for Locomotor Control: Of Honeybees, Robots, and Humans, Psychological Science, vol.10, issue.3, pp.272-278, 2002.
DOI : 10.1038/84054

A. P. Duchon and W. H. Warren, Robot navigation from a Gibsonian viewpoint, Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp.2272-2277, 1994.
DOI : 10.1109/ICSMC.1994.400203

URL : ftp://ftp.cs.brown.edu/pub/papers/ai/apd-gibson.ps.Z

J. P. Dyhr and C. M. Higgins, The spatial frequency tuning of optic-flow-dependent behaviors in the bumblebee Bombus impatiens, Journal of Experimental Biology, vol.213, issue.10, 2010.
DOI : 10.1242/jeb.041426

M. Egelhaaf and R. Kern, Vision in flying insects, Current Opinion in Neurobiology, vol.12, issue.6, pp.699-706, 2002.
DOI : 10.1016/S0959-4388(02)00390-2

H. Eichner, M. Joesch, B. Schnell, D. F. Reiff, and A. Borst, Internal Structure of the Fly Elementary Motion Detector, Neuron, vol.70, issue.6, 2011.
DOI : 10.1016/j.neuron.2011.03.028

F. Expert and F. Ruffier, Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers, Bioinspiration & Biomimetics, vol.10, issue.2, p.26003, 2015.
DOI : 10.1088/1748-3182/10/2/026003

URL : https://doi.org/10.1088/1748-3182/10/2/026003

K. Farrow, J. Haag, and A. Borst, Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron, Nature Neuroscience, vol.12, issue.10, 2006.
DOI : 10.1038/nn1769

D. Floreano, A. J. Ijspeert, and S. Schaal, Robotics and Neuroscience, Current Biology, vol.24, issue.18, pp.910-920, 2014.
DOI : 10.1016/j.cub.2014.07.058

N. Franceschini, Small Brains, Smart Machines: From Fly Vision to Robot Vision and Back Again, Proc. IEEE 102, pp.751-781, 2014.
DOI : 10.1109/JPROC.2014.2312916

N. Franceschini and R. Chagneux, Repetitive scanning in the fly compound eye, G? ottingen Neurobiol. Rep, vol.2, p.279, 1997.

N. Franceschini, J. M. Pichon, and C. Blanes, From Insect Vision to Robot Vision [and Discussion], Philosophical Transactions of the Royal Society B: Biological Sciences, vol.337, issue.1281, pp.283-294, 1992.
DOI : 10.1098/rstb.1992.0106

N. Franceschini, A. Riehle, L. Nestour, and A. , Directionally Selective Motion Detection by Insect Neurons, pp.360-390, 1989.
DOI : 10.1007/978-3-642-74082-4_17

N. Franceschini, F. Ruffier, and J. Serres, A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities, Current Biology, vol.17, issue.4, pp.329-335, 2007.
DOI : 10.1016/j.cub.2006.12.032

URL : https://doi.org/10.1016/j.cub.2006.12.032

M. Franz and H. Mallot, Biomimetic robot navigation, Robotics and Autonomous Systems, vol.30, issue.1-2, pp.133-153, 2000.
DOI : 10.1016/S0921-8890(99)00069-X

S. B. Fuller and R. M. Murray, A hovercraft robot that uses insect-inspired visual autocorrelation for motion control in a corridor, 2011 IEEE International Conference on Robotics and Biomimetics, pp.1474-1481
DOI : 10.1109/ROBIO.2011.6181498

S. B. Fuller, M. Karpelson, A. Censi, K. Y. Ma, and R. J. Wood, Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli, Journal of The Royal Society Interface, vol.15, issue.17, 2014.
DOI : 10.1111/j.1365-3032.1990.tb00521.x

F. Gabbiani, H. G. Krapp, and G. Laurent, Computation of object approach by a wide-field, motion-sensitive neuron, J. Neurosci, vol.19, 1999.

M. A. Garratt and J. S. Chahl, Vision-based terrain following for an unmanned rotorcraft, Journal of Field Robotics, vol.84, issue.4-5, pp.284-301, 2008.
DOI : 10.1007/BF00610992

J. Gibson, The Perception of the Visual World, The American Journal of Psychology, vol.64, issue.3, 1950.
DOI : 10.2307/1419017

J. J. Gibson, VISUALLY CONTROLLED LOCOMOTION AND VISUAL ORIENTATION IN ANIMALS*, British Journal of Psychology, vol.49, issue.3, pp.182-194, 1958.
DOI : 10.1111/j.2044-8295.1958.tb00656.x

K. G. G?-otz and R. Biesinger, Centrophobism inDrosophila melanogaster, Journal of Comparative Physiology A, vol.56, issue.3, pp.329-337, 1985.
DOI : 10.1007/978-3-642-67868-4_4

J. R. Gray, E. Blincow, and R. M. Robertson, A pair of motion-sensitive neurons in the locust encode approaches of a looming object, Journal of Comparative Physiology A, vol.195, issue.12, pp.927-938, 2010.
DOI : 10.1017/S0952523806232061

W. E. Green, P. Y. Oh, and G. Barrows, Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.2347-2352, 2004.
DOI : 10.1109/ROBOT.2004.1307412

S. Griffiths, J. Saunders, A. Curtis, B. Barber, T. Mclain et al., Obstacle and Terrain Avoidance for Miniature Aerial Vehicles, Advances in Unmanned Aerial Vehicles, pp.213-244, 2007.
DOI : 10.1007/978-1-4020-6114-1_7

URL : http://www.ee.byu.edu/~beard/papers/preprints/GriffithsSCMB05.pdf

M. Hartbauer, Simplified bionic solutions: a simple bio-inspired vehicle collision detection system, Bioinspiration & Biomimetics, vol.12, issue.2, p.26007, 2017.
DOI : 10.1088/1748-3190/aa5993

URL : http://iopscience.iop.org/article/10.1088/1748-3190/aa5993/pdf

K. Hausen, Motion sensitive interneurons in the optomotor system of the fly, Biological Cybernetics, vol.124, issue.4, pp.143-156, 1982.
DOI : 10.1007/978-3-642-66432-8_16

V. Helmholtz and H. , Handbuch der physiologischen Optik) 1925) Helmoltz's treatise on physiological optics, 1867.

H. Eriss-e, B. Hamel, T. Mahony, R. Russotto, and F. , A terrain-following control approach for a VTOL unmanned aerial vehicle using average optical flow, Aut. Robots, vol.29, pp.381-399, 2010.

B. Heriss-e, T. Hamel, R. Mahony, and F. Russotto, Landing a VTOL Unmanned Aerial Vehicle on a Moving Platform Using Optical Flow, IEEE Transactions on Robotics, vol.28, issue.1, pp.77-89, 2012.
DOI : 10.1109/TRO.2011.2163435

V. Hofmann, J. I. Sanguinetti-scheck, S. Künzel, B. Geurten, L. Sena et al., Sensory flow shaped by active sensing: sensorimotor strategies in electric fish, Journal of Experimental Biology, vol.216, issue.13, 2013.
DOI : 10.1242/jeb.082420

URL : http://jeb.biologists.org/content/jexbio/216/13/2487.full.pdf

A. D. Horchler, R. E. Reeve, B. Webb, and R. D. Quinn, Robot phonotaxis in the wild: a biologically inspired approach to outdoor sound localization, Advanced Robotics, vol.18, issue.8, pp.801-816, 2004.
DOI : 10.1163/1568553041738095

G. A. Horridge, The Separation of Visual Axes in Apposition Compound Eyes, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.285, issue.1003, pp.1-59, 1978.
DOI : 10.1098/rstb.1978.0093

S. Hrabar, G. S. Sukhatme, P. Corke, K. Usher, and J. Roberts, Combined optic-flow and stereo-based navigation of urban canyons for a UAV, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3309-3316, 2005.
DOI : 10.1109/IROS.2005.1544998

J. S. Humbert, Bio-inspired Visuomotor Convergence in Navigation and Flight Control Systems, 2005.
DOI : 10.1109/cdc.2005.1582162

J. S. Humbert and A. M. Hyslop, Bioinspired Visuomotor Convergence, IEEE Transactions on Robotics, vol.26, issue.1, pp.121-130, 2010.
DOI : 10.1109/TRO.2009.2033330

J. S. Humbert, R. M. Murray, and M. H. Dickinson, A Control-Oriented Analysis of Bio-inspired Visuomotor Convergence, Proceedings of the 44th IEEE Conference on Decision and Control, pp.245-250, 2005.
DOI : 10.1109/CDC.2005.1582162

J. S. Humbert, R. M. Murray, and M. H. Dickinson, Pitch-Altitude Control and Terrain Following Based on Bio-Inspired Visuomotor Convergence, AIAA Guidance, Navigation, and Control Conference and Exhibit, pp.2005-6280, 2005.
DOI : 10.1007/BF00365219

J. S. Humbert, R. M. Murray, and M. H. Dickinson, SENSORIMOTOR CONVERGENCE IN VISUAL NAVIGATION AND FLIGHT CONTROL SYSTEMS, Proc. 16th IFAC World Congress, pp.253-258, 2005.
DOI : 10.3182/20050703-6-CZ-1902.02003

J. S. Humbert, A. Hyslop, and M. Chinnm, Experimental validation of wide-field integration methods for autonomous navigation, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2144-2149, 2007.
DOI : 10.1109/IROS.2007.4399488

A. Hyslop, H. G. Krapp, and J. S. Humbert, Control theoretic interpretation of directional motion preferences in optic flow processing interneurons, Biological Cybernetics, vol.22, issue.2, pp.353-364, 2010.
DOI : 10.1007/978-3-642-66179-2

M. Ibbotson, Evidence for velocityetuned motion-sensitive descending neurons in the honeybee, Proc. R. Soc. Lond. B Biol. Sci, vol.268, 2001.

A. J. Ijspeert, Biorobotics: Using robots to emulate and investigate agile locomotion, Science, vol.20, issue.23, 2014.
DOI : 10.1088/1748-3182/9/1/011001

URL : https://infoscience.epfl.ch/record/202118/files/Science-2014-Biorobotics-Ijspeert-Preprint.pdf

D. Izzo and G. D. Croon, Landing with Time-to-Contact and Ventral Optic Flow Estimates, Journal of Guidance, Control, and Dynamics, vol.5, issue.4, 2012.
DOI : 10.1098/rstb.1980.0089

S. Kahlouche and K. Achour, Optical flow based robot obstacle avoidance, Int. J. Adv. Robot. Syst, vol.4, pp.13-16, 2007.

F. Kendoul, Four-dimensional guidance and control of movement using time-to-contact: Application to automated docking and landing of unmanned rotorcraft systems, The International Journal of Robotics Research, vol.22, issue.1, pp.237-267, 2014.
DOI : 10.1109/TRO.2005.858857

R. Kern, N. Boeddeker, L. Dittmar, and M. Egelhaaf, Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information, Journal of Experimental Biology, vol.215, issue.14, 2012.
DOI : 10.1242/jeb.061713

URL : http://jeb.biologists.org/content/jexbio/215/14/2501.full.pdf

J. Keshavan, G. Gremillion, H. Escobar-alvarez, and J. Humbert, A m analysisbased , controller-synthesis framework for robust bioinspired visual navigation in less-structured environments, Bioinspir. Biomim, vol.9, 2014.

J. Keshavan, G. Gremillion, H. Alvarez-escobar, and J. S. Humbert, Autonomous Vision-Based Navigation of a Quadrotor in Corridor-Like Environments, International Journal of Micro Air Vehicles, vol.14, issue.2, pp.111-124, 2015.
DOI : 10.1016/0167-6911(90)90050-5

W. Kirchner and M. Srinivasan, Freely flying honeybees use image motion to estimate object distance, Naturwissenschaften, vol.9, issue.6, pp.281-282, 1989.
DOI : 10.1007/BF00368643

J. J. Koenderink, A. J. Van-doorn, H. G. Krapp, B. Hengstenberg, and R. Hengstenberg, Facts on optic flow Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly, Biol. Cybern. J. Neurophysiol, vol.56, issue.79, 1987.

H. G. Krapp and R. Hengstenberg, Estimation of self-motion by optic flow processing in single visual interneurons, Nature, vol.384, issue.6608, pp.463-466, 1996.
DOI : 10.1038/384463a0

D. Lambrinos, R. M?-oller, T. Labhart, R. Pfeifer, and R. Wehner, A mobile robot employing insect strategies for navigation, Robotics and Autonomous Systems, vol.30, issue.1-2, pp.39-64, 2000.
DOI : 10.1016/S0921-8890(99)00064-0

URL : http://www.cs.umu.se/kurser/TDBD17/VT04/dl/Assignment Papers/lambrinos-RAS-2000.pdf

M. F. Land and T. Collett, Chasing behaviour of houseflies (Fannia canicularis), Journal of Comparative Physiology, vol.2, issue.4, 1974.
DOI : 10.1007/BF00695351

T. Landgraf, M. Oertel, D. Rhiel, and R. Rojas, A biomimetic honeybee robot for the analysis of the honeybee dance communication system, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3097-3102, 2010.
DOI : 10.1109/IROS.2010.5650930

D. N. Lee, A theory of visual control of braking based on information about time-to-collision. Perception 5, pp.437-459, 1976.

M. Lehrer and M. V. Srinivasan, Active vision in honeybees: Task-oriented suppression of an innate behaviour, Vision Research, vol.34, issue.4, pp.511-516, 1994.
DOI : 10.1016/0042-6989(94)90164-3

N. Linander, M. Dacke, and E. Baird, Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field, Journal of Experimental Biology, vol.218, issue.7, 2015.
DOI : 10.1242/jeb.107409

URL : http://jeb.biologists.org/content/jexbio/218/7/1051.full.pdf

J. P. Lindemann, H. Weiss, R. M?-oller, and M. Egelhaaf, Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly, Biological Cybernetics, vol.22, issue.3, pp.213-227, 2008.
DOI : 10.1007/BF00192653

J. Martin, A portrait of locomotor behaviour in Drosophila determined by a video-tracking paradigm, Behavioural Processes, vol.67, issue.2, pp.207-219, 2004.
DOI : 10.1016/j.beproc.2004.04.003

URL : https://hal.archives-ouvertes.fr/hal-00140304

L. Muratet, S. Doncieux, Y. Briere, and J. Meyer, A contribution to vision-based autonomous helicopter flight in urban environments, Robotics and Autonomous Systems, vol.50, issue.4, 2005.
DOI : 10.1016/j.robot.2004.09.017

URL : https://hal.archives-ouvertes.fr/hal-01185695

K. Nakayama and J. Loomis, Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis, Perception, vol.225, issue.1, pp.63-80, 1974.
DOI : 10.1038/225094a0

R. Nelson and J. Aloimonos, Using flow field divergence for obstacle avoidance in visual navigation, Proceedings: Image Understanding Workshop, 1988.
DOI : 10.1109/ccv.1988.589990

E. G. De-oliveira, Migratory and Foraging Movements in Diurnal Neotropical Lepidoptera: Experimental Studies on Orientation and Learning, 1998.

G. Portelli, J. Serres, F. Ruffier, and N. Franceschini, Modelling honeybee visual guidance in a 3-D environment, Journal of Physiology-Paris, vol.104, issue.1-2, pp.27-39, 2010.
DOI : 10.1016/j.jphysparis.2009.11.011

G. Portelli, F. Ruffier, F. L. Roubieu, and N. Franceschini, Honeybees' Speed Depends on Dorsal as Well as Lateral, Ventral and Frontal Optic Flows, PLoS ONE, vol.3, issue.11, 2011.
DOI : 10.1371/journal.pone.0019486.s002

URL : https://hal.archives-ouvertes.fr/hal-00743523

M. B. Reiser and M. H. Dickinson, A test bed for insect-inspired robotic control, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.361, issue.1811, 2003.
DOI : 10.1098/rsta.2003.1259

M. Rezaei and F. Saghafi, Optical flow???based obstacle avoidance of a fixed???wing MAV, Aircraft Engineering and Aerospace Technology, vol.83, issue.2, pp.85-93, 2011.
DOI : 10.1109/TRO.2005.858857

F. C. Rind, A chemical synapse between two motion detecting neurones in the locust brain, J. Exp. Biol, vol.110, pp.143-167, 1984.

F. C. Rind, Non-directional, movement sensitive neurones of the locust optic lobe, Journal of Comparative Physiology A, vol.116, issue.3, pp.477-494, 1987.
DOI : 10.1007/BF00603973

F. C. Rind and D. Bramwell, Neural network based on the input organization of an identified neuron signaling impending collision, J. Neurophysiol, vol.75, pp.967-985, 1996.

F. C. Rind and P. J. Simmons, Orthopteran dcmd neuron: a reevaluation of responses to moving objects. i. selective responses to approaching objects, 1992.

F. C. Rind and P. J. Simmons, Signaling of object approach by the DCMD neuron of the locust, J. Neurophysiol, vol.77, 1997.

F. C. Rind, R. D. Santer, J. M. Blanchard, and P. F. Verschure, Locusts looming detectors for robot sensors, Sensors and Sensing in Biology and Engineering, pp.237-250, 2003.
DOI : 10.1007/978-3-7091-6025-1_17

F. C. Rind, R. D. Santer, and G. A. Wright, Arousal Facilitates Collision Avoidance Mediated by a Looming Sensitive Visual Neuron in a Flying Locust, Journal of Neurophysiology, vol.100, issue.2, 2008.
DOI : 10.1152/jn.01055.2007

F. L. Roubieu, J. Serres, N. Franceschini, F. Ruffier, and S. Viollet, A fully-autonomous hovercraft inspired by bees: Wall following and speed control in straight and tapered corridors, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.1311-1318
DOI : 10.1109/ROBIO.2012.6491150

URL : https://hal.archives-ouvertes.fr/hal-00743129

F. L. Roubieu, J. R. Serres, F. Colonnier, N. Franceschini, S. Viollet et al., A biomimetic vision-based hovercraft accounts for bees??? complex behaviour in various corridors, Bioinspiration & Biomimetics, vol.9, issue.3, p.36003, 2014.
DOI : 10.1088/1748-3182/9/3/036003

URL : https://hal.archives-ouvertes.fr/hal-01446797

F. Ruffier and N. Franceschini, Optic flow regulation: the key to aircraft automatic guidance, Robotics and Autonomous Systems, vol.50, issue.4, pp.177-194, 2005.
DOI : 10.1016/j.robot.2004.09.016

URL : http://prism2.mem.drexel.edu/~billgreen/Bibliography/ruffierIJRAS2005.pdf

F. Ruffier and N. Franceschini, Optic Flow Regulation in Unsteady Environments: A Tethered MAV Achieves Terrain Following and Targeted Landing Over a Moving Platform, Journal of Intelligent & Robotic Systems, vol.215, issue.1, pp.275-293, 2015.
DOI : 10.1109/ROBOT.2010.5509364

URL : https://hal.archives-ouvertes.fr/hal-01414071

F. Ruffier, S. Viollet, S. Amic, and N. Franceschini, Bio-inspired optical flow circuits for the visual guidance of micro air vehicles, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03., p.846
DOI : 10.1109/ISCAS.2003.1205152

F. Ruffier, J. Serres, G. P. Masson, and N. Franceschini, A beein the corridor: regulating the optic flow on one side, Proceedings of the 7th meeting of the German neuroscience societyd31st G? ottingen neurobiology conference, G? ottingen, 2007.

C. Sabo, A. Cope, K. Gurny, E. Vasilaki, and J. A. Marshall, Bio-Inspired Visual Navigation for a Quadcopter using Optic Flow, AIAA Infotech @ Aerospace, p.404, 2016.
DOI : 10.2307/3213263

J. Santos-victor, G. Sandini, F. Curotto, and S. Garibaldi, Divergent stereo for robot navigation: learning from bees, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.434-439, 1993.
DOI : 10.1109/CVPR.1993.341094

URL : http://www.isr.ist.utl.pt/~jasv/vislab/publications/ps/93-cvpr.ps.gz

J. Santos-victor, G. Sandini, F. Curotto, and S. Garibaldi, Divergent stereo in autonomous navigation: From bees to robots, International Journal of Computer Vision, vol.60, issue.6162, pp.159-177, 1995.
DOI : 10.1007/BF01418981

C. Schilstra and J. Van-hateren, Blowfly flight and optic flow. i. thorax kinematics and flight dynamics, J. Exp. Biol, vol.202, 1999.

P. Serra, R. Cunha, T. Hamel, D. Cabecinhas, and C. Silvestre, Landing on a moving target using image-based visual servo control, 53rd IEEE Conference on Decision and Control, pp.2179-2184
DOI : 10.1109/CDC.2014.7039721

URL : https://hal.archives-ouvertes.fr/hal-01342060

J. Serres, M. G. Ruffier, and N. Franceschini, A bee in the corridor: centering and wall-following, Naturwissenschaften, vol.8, issue.4, 2008.
DOI : 10.1007/978-1-4613-2743-1_16

J. R. Serres and F. Ruffier, Biomimetic Autopilot Based on Minimalistic Motion Vision for Navigating along Corridors Comprising U-shaped and S-shaped Turns, Journal of Bionic Engineering, vol.12, issue.1, pp.47-60, 2015.
DOI : 10.1016/S1672-6529(14)60099-8

URL : https://hal.archives-ouvertes.fr/hal-01108274

J. Serres, F. Ruffier, and N. Franceschini, Two optic flow regulators for speed control and obstacle avoidance, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006., pp.750-757, 2006.
DOI : 10.1109/BIOROB.2006.1639180

URL : http://prism2.mem.drexel.edu/~billgreen/Bibliography/serresBRB2006.pdf

J. Serres, D. Dray, F. Ruffier, and N. Franceschini, A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance, Autonomous Robots, vol.312, issue.4, pp.103-122, 2008.
DOI : 10.1007/978-3-642-74082-4_17

J. Serres, F. Ruffier, G. P. Masson, and N. Franceschini, A bee in the corridor: centering and wall-following, Proceedings of the 7th meeting of the German neuroscience societyd31st G? ottingen neurobiology conference, G? ottingen, 2007.
DOI : 10.1007/978-1-4613-2743-1_16

W. Shyy, C. Kang, P. Chirarattananon, S. Ravi, and H. Liu, Aerodynamics, sensing and control of insect-scale flapping-wing flight, Proc. R. Soc. A, 2015.
DOI : 10.1098/rspa.2015.0712

URL : http://rspa.royalsocietypublishing.org/content/royprsa/472/2186/20150712.full.pdf

M. V. Srinivasan, How Insects Infer Range from Visual Motion, 1993.

M. V. Srinivasan, Visual control of navigation in insects and its relevance for robotics, Current Opinion in Neurobiology, vol.21, issue.4, pp.535-543, 2011.
DOI : 10.1016/j.conb.2011.05.020

M. Srinivasan, M. Lehrer, W. Kirchner, and S. Zhang, Abstract, Visual Neuroscience, vol.36, issue.05, pp.519-535, 1991.
DOI : 10.1017/S095252380000033X

M. Srinivasan, S. Zhang, M. Lehrer, and T. Collett, Honeybee navigation en route to the goal: visual flight control and odometry, J. Exp. Biol, vol.199, pp.237-244, 1996.

M. V. Srinivasan, J. S. Chahl, K. Weber, S. Venkatesh, M. G. Nagle et al., Robot navigation inspired by principles of insect vision, pp.203-216, 1999.
DOI : 10.1016/s0921-8890(98)00069-4

M. V. Srinivasan, S. Zhang, J. S. Chahl, E. Barth, and S. Venkatesh, How honeybees make grazing landings on flat surfaces, Biological Cybernetics, vol.83, issue.3, pp.171-183, 2000.
DOI : 10.1007/s004220000162

R. Srygley, E. De-oliveira, I. Woiwood, D. Reynolds, and C. Thomas, Orientation mechanisms and migration strategies within the flight boundary layer., Insect Movement: Mechanisms and Consequences. Proceedings of the Royal Entomological Society's 20th Symposium. CABI, pp.183-206, 1999.
DOI : 10.1079/9780851994567.0183

N. J. Strausfeld, Atlas of an Insect Brain, 2012.
DOI : 10.1007/978-3-642-66179-2

N. J. Strausfeld and U. Bassemir, Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala, Cell and Tissue Research, vol.25, issue.3, pp.617-640, 1985.
DOI : 10.1007/978-1-4899-5379-7

A. D. Straw, S. Lee, and M. H. Dickinson, Visual Control of Altitude in Flying Drosophila, Current Biology, vol.20, issue.17, 2010.
DOI : 10.1016/j.cub.2010.07.025

L. F. Tammero and M. H. Dickinson, The influence of visual landscape on the free flight behavior of the fruit fly drosophilamelanogaster, J. Exp. Biol, vol.205, pp.327-343, 2002.

G. K. Taylor and H. G. Krapp, Sensory systems and flight stability: what do insects measure and why? Adv. Insect Physiol, pp.231-316, 2007.
DOI : 10.1016/s0065-2806(07)34005-8

S. Viollet, Vibrating Makes for Better Seeing: From the Fly????????s Micro-Eye Movements to Hyperacute Visual Sensors, Frontiers in Bioengineering and Biotechnology, vol.66, issue.Pt 11, 2014.
DOI : 10.1016/j.visres.2012.06.011

W. Jr and W. H. , Visually controlled locomotion: 40 years later, Ecol. Psychol, vol.10, pp.177-219, 1998.

B. Webb, Can robots make good models of biological behaviour? Behav, Brain Sci, vol.24, 2001.
DOI : 10.1017/s0140525x01000127

B. Webb, Validating biorobotic models, Journal of Neural Engineering, vol.3, issue.3, p.25, 2006.
DOI : 10.1088/1741-2560/3/3/R01

B. Webb and A. Wystrach, Neural mechanisms of insect navigation, Current Opinion in Insect Science, vol.15, pp.27-39, 2016.
DOI : 10.1016/j.cois.2016.02.011

K. Weber, S. Venkatesh, and M. V. Srinivasan, Insect inspired behaviours for the autonomous control of mobile robots From living eyes to seeing machines, pp.226-248, 1997.

T. C. Whiteside and G. Samuel, Blur Zone, Nature, vol.7, issue.5227, pp.94-95, 1970.
DOI : 10.1038/225094a0

J. Zeil, N. Boeddeker, and J. M. Hemmi, Vision and the organization of behaviour, Current Biology, vol.18, issue.8, pp.320-323, 2008.
DOI : 10.1016/j.cub.2008.02.017

S. Zhang, W. Xiang, L. Zili, and M. Srinivasan, Abstract, Visual Neuroscience, vol.7, issue.04, pp.379-386, 1990.
DOI : 10.1007/BF00657542

URL : https://hal.archives-ouvertes.fr/hal-01126336

J. Zufferey and D. Floreano, Fly-inspired visual steering of an ultralight indoor aircraft, IEEE Transactions on Robotics, vol.22, issue.1, pp.137-146, 2006.
DOI : 10.1109/TRO.2005.858857

URL : http://prism2.mem.drexel.edu/~billgreen/Bibliography/zuffereyTR2006.pdf

J. Zufferey and D. Floreano, Toward 30-gram Autonomous Indoor Aircraft: Vision-based Obstacle Avoidance and Altitude Control, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.2594-2599
DOI : 10.1109/ROBOT.2005.1570504