, GSE83860.foxa1.lncap_dht GSE72249.foxa1.mcf7_e2 ERP000380.foxa1.zr751_e2_tam ERP001226.foxa1.mdamb453 GSE64656.foxa1.lncap GSE56086.foxa1.vcap_etoh GSE83860.foxa1.lncap_tnfa ERP001226.foxa1.mcf7 GSE58428

G. , , pp.7-9

G. , , p.24

, GSE40129.FOXA1.mcf7_veh GSE28264.FOXA1.lncap_etoh GSE23852.FOXA1.mcf7_e2 GSE28264.FOXA1.lncap_dht GSE25710.FOXA1.zr751

E. R. Mardis, ChIP-seq: welcome to the new frontier, Nat. Methods, vol.4, pp.613-614, 2007.

T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim et al., NCBI GEO: archive for functional genomics data sets-update, Nucleic Acids Res, vol.41, pp.991-995, 2013.

N. Kolesnikov, E. Hastings, M. Keays, O. Melnichuk, Y. A. Tang et al., ArrayExpress update-simplifying data submissions, Nucleic Acids Res, vol.43, pp.1113-1116, 2015.

A. Griffon, Q. Barbier, J. Dalino, J. Van-helden, S. Spicuglia et al., Integrative analysis of public ChIP-seq experiments reveals a complex multi-cell regulatory landscape, Nucleic Acids Res, vol.43, p.27, 2015.
DOI : 10.1093/nar/gku1280

URL : https://hal.archives-ouvertes.fr/hal-01219379

. Encode-project-consortium, An integrated encyclopedia of DNA elements in the human genome, Nature, vol.489, pp.57-74, 2012.

K. Zhou, S. Liu, W. Sun, L. Zheng, H. Zhou et al., ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data, Nucleic Acids Res, vol.45, pp.43-50, 2017.

I. Yevshin, R. Sharipov, T. Valeev, A. Kel, and F. Kolpakov, GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments, Nucleic Acids Res, vol.45, pp.61-67, 2017.
DOI : 10.1093/nar/gkw951

URL : https://academic.oup.com/nar/article-pdf/45/D1/D61/8847264/gkw951.pdf

B. Yates, B. Braschi, K. A. Gray, R. L. Seal, S. Tweedie et al., Genenames.org: the HGNC and VGNC resources in 2017, Nucleic Acids Res, vol.45, pp.619-625, 2017.

M. Gremse, A. Chang, I. Schomburg, A. Grote, M. Scheer et al., The BRENDA Tissue Ontology (BTO): the first all-integrating ontology of all organisms for enzyme sources, Nucleic Acids Res, vol.39, pp.507-513, 2011.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.
DOI : 10.1038/nmeth.1923

URL : http://europepmc.org/articles/pmc3322381?pdf=render

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, vol.25, pp.2078-2079, 1000.
DOI : 10.1093/bioinformatics/btp352

URL : https://academic.oup.com/bioinformatics/article-pdf/25/16/2078/531810/btp352.pdf

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson et al., Model-based analysis of ChIP-Seq (MACS), Genome Biol, vol.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2008-9-9-r137

S. G. Landt, G. K. Marinov, A. Kundaje, P. Kheradpour, F. Pauli et al., ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia, Genome Res, vol.22, pp.1813-1831, 2012.

E. V. Davydov, D. L. Goode, M. Sirota, G. M. Cooper, A. Sidow et al., Identifying a high fraction of the human genome to be under selective constraint using GERP++, PLoS Comput. Biol, vol.6, p.1001025, 2010.

B. Paten, J. Herrero, K. Beal, S. Fitzgerald, and E. Birney, Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs, Genome Res, vol.18, pp.1814-1828, 2008.
DOI : 10.1101/gr.076554.108

URL : http://genome.cshlp.org/content/18/11/1814.full.pdf

B. L. Aken, P. Achuthan, W. Akanni, M. R. Amode, F. Bernsdorff et al., Nucleic Acids Res, vol.45, pp.635-642, 2017.

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

S. Mei, Q. Qin, Q. Wu, H. Sun, R. Zheng et al., Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse, Nucleic Acids Res, vol.45, pp.658-662, 2017.

, Nucleic Acids Research, vol.46, p.275, 2018.

. Roadmap-epigenomics-consortium, A. Kundaje, W. Meuleman, J. Ernst, M. Bilenky et al., Integrative analysis of 111 reference human epigenomes, Nature, vol.518, pp.317-330, 2015.

M. Mendoza-parra, M. M. Saleem, M. Blum, P. Cholley, and H. Gronemeyer, NGS-QC generator: a quality control system for ChIP-Seq and related deep sequencing-generated datasets, Methods Mol. Biol, vol.1418, pp.243-265, 2016.

G. K. Marinov, A. Kundaje, P. J. Park, and B. J. Wold, Large-scale quality analysis of published ChIP-seq data, G3 (Bethesda), vol.4, pp.209-223, 2014.

C. Tyner, G. P. Barber, J. Casper, H. Clawson, M. Diekhans et al., The UCSC Genome Browser database: 2017 update, Nucleic Acids Res, vol.45, pp.626-634, 2017.

B. J. Raney, T. R. Dreszer, G. P. Barber, H. Clawson, P. A. Fujita et al., Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser, Bioinformatics, vol.30, pp.1003-1005, 2014.

H. Thorvaldsdóttirthorvaldsd´thorvaldsdóttir, J. T. Robinson, and J. P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration, Brief. Bioinform, vol.14, pp.178-192, 2013.

A. Khan, O. Fornes, A. Stigliani, F. N. Gheorghe, J. A. Castro-mondragon et al., JASPAR 2018: update of the open-access database of transcription factor binding profiles andits web framework, Nucleic Acids Res, 2018.

A. Mathelier, O. Fornes, D. J. Arenillas, C. Y. Chen, G. Denay et al., JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles, Nucleic Acids Res, vol.44, pp.110-115, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281181