A. C. Aiken, B. De-foy, C. Wiedinmyer, P. F. Decarlo, I. M. Ulbrich et al., Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) ? Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction, Atmos. Chem. Phys, vol.105194, pp.5315-534110, 2010.

S. K. Akagi, R. J. Yokelson, I. R. Burling, S. Meinardi, I. Simpson et al., Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys, vol.135194, pp.1141-116510, 1141.

M. O. Andreae and P. Merlet, Emission of trace gases and aerosols from biomass burning, Global Biogeochemical Cycles, vol.34, issue.4, pp.955-966, 2001.
DOI : 10.1016/S1352-2310(99)00450-1

M. Baasandorj, D. B. Millet, L. Hu, D. Mitroo, W. et al., Measuring acetic and formic acid by proton-transferreaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences, Atmos. Meas. Tech, vol.85194, pp.1303-132110, 1303.
DOI : 10.5194/amt-8-1303-2015

URL : http://doi.org/10.5194/amt-8-1303-2015

H. Bandow, N. Washida, and H. Akimoto, ???Air System, Bulletin of the Chemical Society of Japan, vol.58, issue.9, pp.2531-2540, 1985.
DOI : 10.1246/bcsj.58.2531

P. Barmet, J. Dommen, P. F. Decarlo, T. Tritscher, A. P. Praplan et al., OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber, Atmos. Meas. Tech, vol.55194, pp.647-65610, 2012.
DOI : 10.5194/amtd-4-7471-2011

URL : https://doi.org/10.5194/amtd-4-7471-2011

Q. Bian, A. A. May, S. M. Kreidenweis, P. , and J. R. , Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments, Atmos. Chem. Phys, vol.155194, pp.11027-1104510, 2015.

A. K. Bølling, J. Pagels, K. E. Yttri, L. Barregard, G. Sallsten et al., Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties, Part. Fibre Toxicol, vol.6, pp.10-1186, 2009.

E. A. Bruns, M. Krapf, J. Orasche, Y. Huang, R. Zimmermann et al., Characterization of primary and secondary wood combustion products generated under different burner loads, Atmos. Chem. Phys, vol.155194, pp.2825-284110, 2015.

E. A. Bruns, I. Haddad, A. Keller, F. Klein, N. K. Kumar et al., Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition, Atmos. Meas. Tech, vol.85194, pp.2315-233210, 2015.

E. A. Bruns, I. Haddad, J. G. Slowik, D. Kilic, F. Klein et al., Identification of significant precursor gases of secondary organic aerosols from residential wood combustion, Scientific Reports, vol.4, issue.1, p.2788110, 1038.
DOI : 10.5194/gmd-4-625-2011

K. Buhr, S. Van-ruth, and C. Delahunty, Analysis of volatile flavour compounds by Proton Transfer Reaction-Mass Spectrometry: fragmentation patterns and discrimination between isobaric and isomeric compounds, International Journal of Mass Spectrometry, vol.221, issue.1, pp.1-7, 2002.
DOI : 10.1016/S1387-3806(02)00896-5

L. Cappellin, T. Karl, M. Probst, O. Ismailova, P. M. Winkler et al., On Quantitative Determination of Volatile Organic Compound Concentrations Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry, Environmental Science & Technology, vol.46, issue.4, pp.2283-2290, 2012.
DOI : 10.1021/es203985t

A. W. Chan, K. E. Kautzman, P. S. Chhabra, J. D. Surratt, M. N. Chan et al., Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys, vol.95194, pp.3049-306010, 2009.

A. Chebbi and P. Carlier, Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review, Atmospheric Environment, vol.30, issue.24, pp.4233-4249, 1996.
DOI : 10.1016/1352-2310(96)00102-1

T. J. Christian, B. Kleiss, R. J. Yokelson, R. Holzinger, P. J. Crutzen et al., Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels, Journal of Geophysical Research, vol.108, issue.D20, p.471910, 1029.
DOI : 10.1029/2003JD003704

T. J. Christian, B. Kleiss, R. J. Yokelson, R. Holzinger, P. J. Crutzen et al., Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, J. Geophys. Res.-Atmos, vol.109, p.231110, 1029.

M. M. Coggon, P. R. Veres, B. Yuan, A. Koss, C. Warneke et al., Emissions of nitrogen-containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers, Geophysical Research Letters, vol.9, issue.1, pp.9903-9912, 2016.
DOI : 10.5194/amt-9-2735-2016

M. Crippa, P. F. Decarlo, J. G. Slowik, C. Mohr, M. F. Heringa et al., Wintertime aerosol chemical composition and source apportionment of the organic fraction in the www.atmos-chem-phys, Atmos. Chem. Phys, vol.705, issue.17, pp.705-720, 2017.

E. A. Bruns, Fresh and aged residential wood combustion emissions metropolitan area of Paris, Atmos. Chem. Phys, vol.135194, issue.10, pp.961-981, 2013.

J. A. De-gouw, C. Warneke, D. D. Parrish, J. S. Holloway, M. Trainer et al., Emission sources and ocean uptake of acetonitrile (CH 3 CN) in the atmosphere, J. Geophys. Res.- Atmos, vol.108, pp.432910-1029, 2003.

J. A. De-gouw, C. Warneke, A. Stohl, A. G. Wollny, C. A. Brock et al., Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada, Journal of Geophysical Research: Atmospheres, vol.108, issue.D13, p.10, 1029.
DOI : 10.1029/2002JD002322

J. A. De-gouw, D. Welsh-bon, C. Warneke, W. C. Kuster, L. Alexander et al., Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City, during the MILAGRO study, pp.3425-344210, 2006.

E. Dunne, I. E. Galbally, S. Lawson, P. , and A. , Interference in the PTR-MS measurement of acetonitrile at m/z 42 in polluted urban air???A study using switchable reagent ion PTR-MS, International Journal of Mass Spectrometry, vol.319, issue.320, pp.319-320, 2012.
DOI : 10.1016/j.ijms.2012.05.004

M. Evtyugina, C. Alves, A. Calvo, T. Nunes, L. Tarelho et al., VOC emissions from residential combustion of Southern and mid-European woods, Atmospheric Environment, vol.83, pp.90-98, 2014.
DOI : 10.1016/j.atmosenv.2013.10.050

P. P. Fu, Q. Xia, X. Sun, Y. , and H. , Phototoxicity and Environmental Transformation of Polycyclic Aromatic Hydrocarbons (PAHs)???Light-Induced Reactive Oxygen Species, Lipid Peroxidation, and DNA Damage, Journal of Environmental Science and Health, Part C, vol.39, issue.1, pp.1-41, 2012.
DOI : 10.1111/j.1751-1097.1991.tb02071.x

K. Gaeggeler, A. S. Prevot, J. Dommen, G. Legreid, S. Reimann et al., Residential wood burning in an Alpine valley as a source for oxygenated volatile organic compounds, hydrocarbons and organic acids, Atmospheric Environment, vol.42, issue.35, pp.8278-8287, 2008.
DOI : 10.1016/j.atmosenv.2008.07.038

J. B. Gilman, B. M. Lerner, W. C. Kuster, P. D. Goldan, C. Warneke et al., Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US, Atmospheric Chemistry and Physics, vol.15, issue.24, pp.13915-1393810, 2015.
DOI : 10.5194/acp-15-13915-2015

M. Glasius, M. Ketzel, P. Wåhlin, B. Jensen, J. Mønster et al., Impact of wood combustion on particle levels in a residential area in Denmark, Atmospheric Environment, vol.40, issue.37, pp.7115-7124, 2006.
DOI : 10.1016/j.atmosenv.2006.06.047

G. Alvarez, E. Borrás, E. Viidanoja, J. Hjorth, and J. , Unsaturated dicarbonyl products from the OH-initiated photo-oxidation of furan, 2-methylfuran and 3-methylfuran, Atmospheric Environment, vol.43, issue.9, pp.1603-1612, 2009.
DOI : 10.1016/j.atmosenv.2008.12.019

C. Gonçalves, C. Alves, and C. Pio, Inventory of fine particulate organic compound emissions from residential wood combustion in Portugal, Atmospheric Environment, vol.50, pp.297-306, 2012.
DOI : 10.1016/j.atmosenv.2011.12.013

A. P. Grieshop, J. M. Logue, N. M. Donahue, R. , and A. L. , Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution, Atmos. Chem. Phys, vol.95194, pp.1263-127710, 1263.

A. P. Grieshop, N. M. Donahue, R. , and A. L. , Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data, Atmos . Chem. Phys, vol.95194, pp.2227-224010, 2009.

S. Guofeng, W. Siye, W. Wen, Z. Yanyan, M. Yujia et al., Emission Factors, Size Distributions, and Emission Inventories of Carbonaceous Particulate Matter from Residential Wood Combustion in Rural China, Environmental Science & Technology, vol.46, issue.7, pp.4207-4214, 2012.
DOI : 10.1021/es203957u

K. Hansson, J. Samuelsson, C. Tullin, Å. , and L. , Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds, Combustion and Flame, vol.137, issue.3, pp.265-277, 2004.
DOI : 10.1016/j.combustflame.2004.01.005

E. Hedberg, A. Kristensson, M. Ohlsson, C. Johansson, P. Johansson et al., Chemical and physical characterization of emissions from birch wood combustion in a wood stove, Atmospheric Environment, vol.36, issue.30, pp.4823-4837, 2002.
DOI : 10.1016/S1352-2310(02)00417-X

C. J. Hennigan, A. P. Sullivan, J. L. Collett, R. , and A. L. , Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals, Geophysical Research Letters, vol.10, issue.22, pp.10-1029, 2010.
DOI : 10.5194/acpd-10-7037-2010

H. Herich, M. F. Gianini, C. Piot, G. Mo?nik, J. L. Jaffrezo et al., Overview of the impact of wood burning emissions on carbonaceous aerosols and PM in large parts of the Alpine region, Atmospheric Environment, vol.89, pp.64-75, 2014.
DOI : 10.1016/j.atmosenv.2014.02.008

URL : https://hal.archives-ouvertes.fr/hal-01539273

M. F. Heringa, P. F. Decarlo, R. Chirico, T. Tritscher, J. Dommen et al., Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer, Atmos . Chem. Phys, vol.115194, pp.5945-595710, 2011.

P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake et al., Evolution of gases and particles from a savanna fire in South Africa, Journal of Geophysical Research: Atmospheres, vol.108, issue.D2, pp.848510-1029, 2003.
DOI : 10.1029/2002JD002322

R. Holzinger, C. Warneke, A. Hansel, A. Jordan, W. Lindinger et al., Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide, Geophysical Research Letters, vol.279, issue.D21, pp.1161-1164, 1999.
DOI : 10.1126/science.279.5347.49

R. Holzinger, J. Williams, G. Salisbury, T. Klüpfel, M. De-reus et al., Oxygenated compounds in aged biomass burning plumes over the Eastern Mediterranean: evidence for strong secondary production of methanol and acetone, Atmos. Chem. Phys, vol.55194, pp.39-4610, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00301453

T. F. Stocker, D. Qin, G. Plattner, M. Tignor, S. K. Allen et al., The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC: Climate Change 2013, 2013.

A. Ito and J. E. Penner, Global estimates of biomass burning emissions based on satellite imagery for the year 2000, Journal of Geophysical Research, vol.39, issue.D13, pp.14-0510, 2004.
DOI : 10.1093/treephys/18.2.129

A. Jordan, S. Haidacher, G. Hanel, E. Hartungen, L. Märk et al., A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), International Journal of Mass Spectrometry, vol.286, issue.2-3, pp.122-128, 2009.
DOI : 10.1016/j.ijms.2009.07.005

T. B. Jordan and A. J. Seen, Effect of Airflow Setting on the Organic Composition of Woodheater Emissions, Environmental Science & Technology, vol.39, issue.10, pp.3601-3610, 2005.
DOI : 10.1021/es0487628

C. Jost, J. Trentmann, D. Sprung, M. O. Andreae, J. B. Mcquaid et al., Trace gas chemistry in a young biomass burning plume over Namibia: Observations and model simulations, Journal of Geophysical Research: Atmospheres, vol.108, issue.224, pp.848210-1029, 2003.
DOI : 10.1029/2002JD002322

M. Kistler, C. Schmidl, E. Padouvas, H. Giebl, J. Lohninger et al., Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe, Atmospheric Environment, vol.51, pp.86-93, 2012.
DOI : 10.1016/j.atmosenv.2012.01.044

P. Krecl, E. Hedberg-larsson, J. Ström, and C. Johansson, Contribution of residential wood combustion and other sources to hourly winter aerosol in Northern Sweden determined by positive matrix factorization, Atmospheric Chemistry and Physics, vol.8, issue.13, pp.3639-365310, 2008.
DOI : 10.5194/acp-8-3639-2008

J. H. Kroll and J. H. Seinfeld, Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere, Atmospheric Environment, vol.42, issue.16, pp.3593-3624, 2008.
DOI : 10.1016/j.atmosenv.2008.01.003

W. Lindinger, A. Hansel, J. , and A. , On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research, International Journal of Mass Spectrometry and Ion Processes, vol.173, issue.3, pp.191-241, 1998.
DOI : 10.1016/S0168-1176(97)00281-4

S. A. Mason, R. J. Field, R. J. Yokelson, M. A. Kochivar, M. R. Tinsley et al., Complex effects arising in smoke plume simulations due to inclusion of direct emissions of oxygenated organic species from biomass combustion, Journal of Geophysical Research: Atmospheres, vol.104, issue.D12, pp.12527-12539, 2001.
DOI : 10.1029/1999JD900817

J. D. Mcdonald, B. Zielinska, E. M. Fujita, J. C. Sagebiel, J. C. Chow et al., Fine Particle and Gaseous Emission Rates from Residential Wood Combustion, Environmental Science & Technology, vol.34, issue.11, pp.2080-2091, 2000.
DOI : 10.1021/es9909632

A. J. Midey, S. Williams, T. M. Miller, and A. A. Viggiano, Reactions of O2+, NO+ and H3O+ with methylcyclohexane (C7H14) and cyclooctane (C8H16) from 298 to 700 K, International Journal of Mass Spectrometry, vol.222, issue.1-3, pp.413-430, 2003.
DOI : 10.1016/S1387-3806(02)00996-X

B. Nozière, M. Kalberer, M. Claeys, J. Allan, B. D-'anna et al., The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, The molecular identification of organic compounds in the atmosphere: state of the art and challenges, pp.3919-3983, 2015.
DOI : 10.1021/cr5003485

R. Overend and G. Paraskevopoulos, Rates of hydroxyl radical reactions. 4. Reactions with methanol, ethanol, 1-propanol, and 2-propanol at 296 K, The Journal of Physical Chemistry, vol.82, issue.12, pp.1329-1333, 1978.
DOI : 10.1021/j100501a001

F. Ozil, V. Tschamber, F. Haas, and G. Trouvé, Efficiency of catalytic processes for the reduction of CO and VOC emissions from wood combustion in domestic fireplaces, Fuel Processing Technology, vol.90, issue.9, pp.1053-1061, 2009.
DOI : 10.1016/j.fuproc.2009.03.019

D. Paraskevopoulou, E. Liakakou, E. Gerasopoulos, M. , and N. , Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece, Sci. Total Environ, pp.527-528, 2015.

F. Paulot, D. Wunch, J. D. Crounse, G. C. Toon, D. B. Millet et al., Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys, vol.115194, pp.1989-201310, 1989.

E. Pettersson, C. Boman, R. Westerholm, D. Boström, and A. Nordin, Stove Performance and Emission Characteristics in Residential Wood Log and Pellet Combustion, Part 2: Wood Stove, Energy & Fuels, vol.25, issue.1, pp.315-323, 2011.
DOI : 10.1021/ef1007787

S. M. Platt, I. Haddad, A. A. Zardini, M. Clairotte, C. Astorga et al., Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber, Atmos. Chem. Phys, vol.135194, pp.9141-915810, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01456525

A. E. Pouli, D. G. Hatzinikolaou, C. Piperi, A. Stavridou, M. C. Psallidopoulos et al., The cytotoxic effect of volatile organic compounds of the gas phase of cigarette smoke on lung epithelial cells, Free Radical Biology and Medicine, vol.34, issue.3, pp.345-355, 2003.
DOI : 10.1016/S0891-5849(02)01289-3

A. P. Praplan, K. Hegyi-gaeggeler, P. Barmet, L. Pfaffenberger, J. Dommen et al., Online measurements of water-soluble organic acids in the gas and aerosol phase from the photooxidation of 1,3,5-trimethylbenzene, Atmos. Chem. Phys, vol.145194, pp.8665-867710, 2014.

A. A. Reda, H. Czech, J. Schnelle-kreis, O. Sippula, J. Orasche et al., Analysis of Gas-Phase Carbonyl Compounds in Emissions from Modern Wood Combustion Appliances: Influence of Wood Type and Combustion Appliance, Energy & Fuels, vol.29, issue.6, pp.3897-3907, 2015.
DOI : 10.1021/ef502877c

K. Sato, S. Hatakeyama, and T. Imamura, Secondary organic aerosol formation during the photooxidation of toluene: NO x www.atmos-chem-phys.net, Atmos. Chem. Phys, vol.17705, issue.17, pp.705-720, 2017.

E. A. Bruns, Fresh and aged residential wood combustion emissions dependence of chemical composition, J. Phys. Chem. A, vol.111, pp.9796-9808, 2007.

J. J. Schauer, M. J. Kleeman, G. R. Cass, and B. R. Simoneit, Organic Compounds from Fireplace Combustion of Wood, Environmental Science & Technology, vol.35, issue.9, pp.1716-1728, 2001.
DOI : 10.1021/es001331e

C. Schmidl, M. Luisser, E. Padouvas, L. Lasselsberger, M. Rzaca et al., Particulate and gaseous emissions from manually and automatically fired small scale combustion systems, Atmospheric Environment, vol.45, issue.39, pp.7443-7454, 2011.
DOI : 10.1016/j.atmosenv.2011.05.006

M. Shao, S. Lu, Y. Liu, X. Xie, C. Chang et al., Volatile organic compounds measured in summer in Beijing and their role in ground???level ozone formation, Journal of Geophysical Research, vol.7, issue.5, pp.0-0610, 2009.
DOI : 10.1080/10934520500182842

H. B. Singh, L. J. Salas, R. B. Chatfield, E. Czech, A. Fried et al., Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P, Journal of Geophysical Research, vol.56, issue.D13, pp.15-0710, 1029.
DOI : 10.1016/B978-012346240-4/50003-5

C. E. Stockwell, P. R. Veres, J. Williams, Y. , and R. J. , Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry, Atmospheric Chemistry and Physics, vol.15, issue.2, pp.845-86510, 2015.
DOI : 10.5194/acp-15-845-2015-supplement

M. ?yc, J. Horák, F. Hopan, K. Krpec, T. Tom?ej et al., Effect of Fuels and Domestic Heating Appliance Types on Emission Factors of Selected Organic Pollutants, Environmental Science & Technology, vol.45, issue.21, pp.9427-9434, 2011.
DOI : 10.1021/es2017945

A. Tabazadeh, R. J. Yokelson, H. B. Singh, P. V. Hobbs, J. H. Crawford et al., Heterogeneous chemistry involving methanol in tropospheric clouds, Geophysical Research Letters, vol.108, issue.D20, pp.10-1029, 2004.
DOI : 10.1029/2003JD003549

J. Tao, J. Gao, L. Zhang, R. Zhang, H. Che et al., PM 2.5 pollution in a megacity of southwest China: source apportionment and implication, Atmos. Chem. Phys, vol.145194, pp.8679-869910, 2014.

C. Warneke, J. A. De-gouw, W. C. Kuster, P. D. Goldan, and R. Fall, Validation of Atmospheric VOC Measurements by Proton-Transfer- Reaction Mass Spectrometry Using a Gas-Chromatographic Preseparation Method, Environmental Science & Technology, vol.37, issue.11, pp.2494-2501, 2003.
DOI : 10.1021/es026266i

C. Warneke, J. A. De-gouw, A. Stohl, O. R. Cooper, P. D. Goldan et al., Biomass burning and anthropogenic sources of CO over New England in the summer, J. Geophys. Res.-Atmos, vol.111, pp.23-1510, 1029.

C. Warneke, J. M. Roberts, P. Veres, J. Gilman, W. C. Kuster et al., VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS, International Journal of Mass Spectrometry, vol.303, issue.1, pp.6-14, 2011.
DOI : 10.1016/j.ijms.2010.12.002

R. J. Yokelson, I. T. Bertschi, T. J. Christian, P. V. Hobbs, D. E. Ward et al., Trace gas measurements in nascent, aged, and cloud-processed smoke from African savanna fires by airborne Fourier transform infrared spectroscopy (AFTIR), Journal of Geophysical Research: Atmospheres, vol.104, issue.D13, pp.847810-1029, 2003.
DOI : 10.1029/1999JD900817

URL : http://onlinelibrary.wiley.com/doi/10.1029/2002JD002322/pdf

R. J. Yokelson, T. J. Christian, T. G. Karl, and A. Guenther, The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data, Atmos. Chem. Phys, vol.85194, pp.3509-352710, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303375

X. Zhang, C. D. Cappa, S. H. Jathar, R. C. Mcvay, J. J. Ensberg et al., Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol, Natl. Acad. Sci. USA, pp.5802-5807, 2014.
DOI : 10.5194/acp-9-3049-2009