M. Lensch, L. Daheron, and T. Schlaeger, Pluripotent stem cells and their niches, Stem Cell Reviews, vol.26, issue.Suppl. 1, pp.185-201, 2006.
DOI : 10.1073/pnas.0608156103

R. Peerani, B. Rao, C. Bauwens, T. Yin, and G. Wood, Niche-mediated control of human embryonic stem cell self-renewal and differentiation, The EMBO Journal, vol.37, issue.22, pp.4744-4755, 2007.
DOI : 10.1038/sj.emboj.7601896

A. Mondino and F. Blasi, uPA and uPAR in fibrinolysis, immunity and pathology, Trends in Immunology, vol.25, issue.8, pp.450-455, 2004.
DOI : 10.1016/j.it.2004.06.004

J. Irigoyen, P. Munoz-canoves, L. Montero, M. Koziczak, and Y. Nagamine, The plasminogen activator system: biology and regulation, Cellular and Molecular Life Sciences, vol.56, issue.1, pp.104-132, 1999.
DOI : 10.1007/PL00000615

D. Rifkin, R. Mazzieri, J. Munger, I. Noguera, and J. Sung, Proteolytic control of growth factor availability, APMIS, vol.11, issue.3, pp.80-85, 1999.
DOI : 10.1038/bjc.1995.393

H. Chapman and Y. Wei, Protease crosstalk with integrins: the urokinase receptor paradigm, Thromb Haemost, vol.86, pp.124-129, 2001.

S. Stefansson and D. Lawrence, The serpin PAI-1 inhibits cell migration by blocking integrin ??v??3 binding to vitronectin, Nature, vol.383, issue.6599, pp.441-443, 1996.
DOI : 10.1038/383441a0

M. Resnati, I. Pallavicini, J. Wang, J. Oppenheim, and C. Serhan, The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R, Proceedings of the National Academy of Sciences, vol.274, issue.10, pp.1359-1364, 2002.
DOI : 10.1074/jbc.274.10.6027

X. Liang, T. Kanjanabuch, S. Mao, C. Hao, and Y. Tang, Plasminogen activator inhibitor-1 modulates adipocyte differentiation, American Journal of Physiology-Endocrinology and Metabolism, vol.290, issue.1, pp.103-113, 2005.
DOI : 10.1038/emm.2001.44

URL : http://ajpendo.physiology.org/content/ajpendo/290/1/E103.full.pdf

G. Mcmahon, E. Petitclerc, S. Stefansson, E. Smith, and M. Wong, Plasminogen Activator Inhibitor-1 Regulates Tumor Growth and Angiogenesis, Journal of Biological Chemistry, vol.113, issue.36, pp.33964-33968, 2001.
DOI : 10.1074/jbc.273.11.6358

C. Isogai, W. Laug, H. Shimada, P. Declerck, and M. Stins, Plasminogen Activator Inhibitor-1 Promotes Angiogenesis by Stimulating Endothelial Cell Migration toward Fibronectin, Cancer Res, vol.61, pp.5587-5594, 2001.

R. Balsara, F. Castellino, and V. Ploplis, A Novel Function of Plasminogen Activator Inhibitor-1 in Modulation of the AKT Pathway in Wild-type and Plasminogen Activator Inhibitor-1-deficient Endothelial Cells, Journal of Biological Chemistry, vol.12, issue.32, pp.22527-22536, 2006.
DOI : 10.1038/sj.onc.1206504

S. Bonavaud, C. Charriere-bertrand, C. Rey, M. Leibovitch, and N. Pedersen, Evidence of a non-conventional role for the urokinase tripartite complex (uPAR/uPA/PAI-1) in myogenic cell fusion, J Cell Sci, vol.110, pp.1083-1089, 1997.

M. Suelves, R. Lopez-alemany, F. Lluis, G. Aniorte, and E. Serrano, Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo, Blood, vol.99, issue.8, pp.2835-2844, 2002.
DOI : 10.1182/blood.V99.8.2835

G. Fibbi, E. Barletta, G. Dini, D. Rosso, A. Pucci et al., Cell Invasion Is Affected by Differential Expression of the Urokinase Plasminogen Activator/Urokinase Plasminogen Activator Receptor System in Muscle Satellite Cells from Normal and Dystrophic Patients, Laboratory Investigation, vol.119, issue.1, pp.27-39, 2001.
DOI : 10.1016/0012-1606(87)90226-0

F. Lluis, R. J. Suelves, M. Parra, M. Aniorte, and G. , Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo, Blood, vol.97, issue.6, pp.1703-1711, 2001.
DOI : 10.1182/blood.V97.6.1703

T. Koh, S. Bryer, A. Pucci, and T. Sisson, Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration, American Journal of Physiology-Cell Physiology, vol.289, issue.1, pp.217-223, 2005.
DOI : 10.1074/jbc.M202668200

A. Wobus and K. Boheler, Embryonic Stem Cells: Prospects for Developmental Biology and Cell Therapy, Physiological Reviews, vol.85, issue.2, pp.635-678, 2005.
DOI : 10.1016/S0248-4900(03)00079-0

V. Kashyap, N. Rezende, K. Scotland, S. Shaffer, and J. Persson, Regulation of Stem Cell Pluripotency and Differentiation Involves a Mutual Regulatory Circuit of the Nanog, OCT4, and SOX2 Pluripotency Transcription Factors With Polycomb Repressive Complexes and Stem Cell microRNAs, Stem Cells and Development, vol.18, issue.7, pp.1093-1108, 2009.
DOI : 10.1089/scd.2009.0113

F. Bost, L. Caron, I. Marchetti, C. Dani, L. Marchand-brustel et al., Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage, Biochemical Journal, vol.361, issue.3, pp.621-627, 2002.
DOI : 10.1042/bj3610621

M. Iacovino, D. Bosnakovski, H. Fey, D. Rux, and G. Bajwa, Inducible Cassette Exchange: A Rapid and Efficient System Enabling Conditional Gene Expression in Embryonic Stem and Primary Cells, STEM CELLS, vol.29, issue.10, 2011.
DOI : 10.1002/stem.625

L. Caron, F. Bost, M. Prot, P. Hofman, and B. Binetruy, A new role for the oncogenic high-mobility group A2 transcription factor in myogenesis of embryonic stem cells, Oncogene, vol.24, issue.41, pp.6281-6291, 2005.
DOI : 10.1093/nar/24.20.4071

M. Aouadi, F. Bost, L. Caron, K. Laurent, L. M. Brustel et al., p38 Mitogen-Activated Protein Kinase Activity Commits Embryonic Stem Cells to Either Neurogenesis or Cardiomyogenesis, p38 Mitogen-Activated Protein Kinase Activity Commits Embryonic Stem Cells to Either Neurogenesis or Cardiomyogenesis, pp.1399-1406, 1319.
DOI : 10.1128/MCB.19.1.21

H. Nar, M. Bauer, J. Stassen, D. Lang, and A. Gils, Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation, Journal of Molecular Biology, vol.297, issue.3, pp.683-695, 2000.
DOI : 10.1006/jmbi.2000.3604

E. Barruet, O. Hadadeh, F. Peiretti, V. Renault, and Y. Hadjal, p38 Mitogen Activated Protein Kinase Controls Two Successive-Steps During the Early Mesodermal Commitment of Embryonic Stem Cells, Stem Cells and Development, vol.20, issue.7, pp.1233-1246, 2011.
DOI : 10.1089/scd.2010.0213

URL : https://hal.archives-ouvertes.fr/inserm-00532566

P. Morange, H. Lijnen, M. Alessi, F. Kopp, and D. Collen, Influence of PAI-1 on Adipose Tissue Growth and Metabolic Parameters in a Murine Model of Diet-Induced Obesity, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.20, issue.4, pp.1150-1154, 2000.
DOI : 10.1161/01.ATV.20.4.1150

B. Carey, S. Markoulaki, J. Hanna, K. Saha, and Q. Gao, Reprogramming of murine and human somatic cells using a single polycistronic vector, Proceedings of the National Academy of Sciences, vol.3, issue.3, pp.157-162, 2009.
DOI : 10.1016/j.stem.2008.08.014

B. Halvorsen, A. Staff, T. Henriksen, T. Sawamura, and T. Ranheim, -iso- Prostaglandin F2I?6F2I?F2I?6 Increases Expression of LOX-1 in JAR Cells, Hypertension, vol.8, issue.37, pp.1184-1190, 2001.

C. Dani, A. Smith, S. Dessolin, P. Leroy, and L. Staccini, Differentiation of embryonic stem cells into adipocytes in vitro, J Cell Sci, vol.110, pp.1279-1285, 1997.

M. Aouadi, K. Laurent, M. Prot, L. Marchand-brustel, Y. Binetruy et al., Inhibition of p38MAPK Increases Adipogenesis From Embryonic to Adult Stages10.2337/diabetes, Diabetes, vol.55, pp.5-0963, 2006.

J. Vassalli and D. Belin, Amiloride selectively inhibits the urokinase-type plasminogen activator, FEBS Letters, vol.245, issue.1, pp.187-191, 1987.
DOI : 10.1172/JCI109798

T. Ishida, H. Tsukada, T. Hasegawa, H. Yoshizawa, and F. Gejyo, Matrix Metalloproteinase-1 Activation via Plasmin Generated on Alveolar Epithelial Cell Surfaces, Lung, vol.84, issue.1 Suppl, pp.15-19, 2006.
DOI : 10.1016/S0002-9440(10)64529-4

B. Binder, J. Mihaly, and G. Prager, uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist's view, Thromb Haemost, vol.97, pp.336-342, 2007.

R. Lopez-alemany, J. Redondo, Y. Nagamine, and P. Munoz-canoves, Plasminogen activator inhibitor type-1 inhibits insulin signaling by competing with ??v??3 integrin for vitronectin binding, European Journal of Biochemistry, vol.281, issue.5, pp.814-821, 2003.
DOI : 10.1152/ajpheart.2001.281.4.H1784

K. Kennedy, T. Porter, V. Mehta, S. Ryan, and F. Price, Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative ??-catenin, BMC Biology, vol.7, issue.1, p.67, 2009.
DOI : 10.1186/1741-7007-7-67

URL : https://bmcbiol.biomedcentral.com/track/pdf/10.1186/1741-7007-7-67?site=bmcbiol.biomedcentral.com