F. De-jong, M. C. Monuteaux, R. M. Van-elburg, M. W. Gillman, and M. B. Belfort, Systematic Review and Meta-Analysis of Preterm Birth and Later Systolic Blood Pressure, Hypertension, vol.59, issue.2, pp.226-234, 1979.
DOI : 10.1161/HYPERTENSIONAHA.111.181784

A. Gough, D. Spence, M. Linden, H. L. Halliday, and L. P. Mcgarvey, P76 General and respiratory health outcomes in adult survivors of bronchopulmonary dysplasia: a systematic review, Thorax, vol.65, issue.Suppl 4, pp.1554-1567, 2012.
DOI : 10.1136/thx.2010.150979.27

A. J. Lewandowski, Elevated Blood Pressure in Preterm-Born Offspring Associates With a Distinct Antiangiogenic State and Microvascular Abnormalities in Adult LifeNovelty and Significance, Hypertension, vol.65, issue.3, pp.607-614, 1979.
DOI : 10.1161/HYPERTENSIONAHA.114.04662

I. Ligi, I. Grandvuillemin, V. Andres, F. Dignat-george, and U. Simeoni, Low Birth Weight Infants and the Developmental Programming of Hypertension: A Focus on Vascular Factors, Seminars in Perinatology, vol.34, issue.3, pp.188-192, 2010.
DOI : 10.1053/j.semperi.2010.02.002

A. J. Lewandowski and P. Leeson, Preeclampsia, prematurity and cardiovascular health in adult life, Early Human Development, vol.90, issue.11, pp.725-729, 2014.
DOI : 10.1016/j.earlhumdev.2014.08.012

A. Kawamoto and T. Asahara, Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies, Catheterization and Cardiovascular Interventions, vol.55, issue.4, pp.477-484, 2007.
DOI : 10.1161/01.CIR.103.5.634

P. J. Psaltis and R. D. Simari, Vascular Wall Progenitor Cells in Health and Disease, Circulation Research, vol.116, issue.8, pp.1392-1412, 2015.
DOI : 10.1161/CIRCRESAHA.116.305368

URL : http://circres.ahajournals.org/content/circresaha/116/8/1392.full.pdf

Y. Lin, D. J. Weisdorf, A. Solovey, and R. P. Hebbel, Origins of circulating endothelial cells and endothelial outgrowth from blood, Journal of Clinical Investigation, vol.105, issue.1, pp.71-77, 2000.
DOI : 10.1172/JCI8071

I. Ligi, A switch toward angiostatic gene expression impairs the angiogenic properties of endothelial progenitor cells in low birth weight preterm infants, Blood, vol.118, issue.6, pp.1699-1709, 2011.
DOI : 10.1182/blood-2010-12-325142

M. Bertagnolli, A. M. Nuyt, B. Thébaud, and T. M. Luu, Endothelial Progenitor Cells as Prognostic Markers of Preterm Birth-Associated Complications, STEM CELLS Translational Medicine, vol.122, issue.1, pp.7-13, 2017.
DOI : 10.1016/j.ophtha.2014.07.050

P. F. Vassallo, Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression, Blood, vol.123, issue.13, pp.2116-2126, 2014.
DOI : 10.1182/blood-2013-02-484956

M. S. Goligorsky, J. Chen, and S. Patschan, Stress-induced premature senescence of endothelial cells: a perilous state between recovery and point of no return, Current Opinion in Hematology, vol.16, issue.3, pp.215-219, 2009.
DOI : 10.1097/MOH.0b013e32832a07bd

D. P. Basile and M. C. Yoder, Circulating and tissue resident endothelial progenitor cells, Journal of Cellular Physiology, vol.229, pp.10-16, 2014.
DOI : 10.1002/jcp.24423

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908443/pdf

A. Salminen, A. Kauppinen, and K. Kaarniranta, Emerging role of NF-??B signaling in the induction of senescence-associated secretory phenotype (SASP), Cellular Signalling, vol.24, issue.4, pp.835-845, 2012.
DOI : 10.1016/j.cellsig.2011.12.006

R. N. Re, J. L. Cook, and . Senescence, Senescence, apoptosis, and stem cell biology: the rationale for an expanded view of intracrine action, AJP: Heart and Circulatory Physiology, vol.297, issue.3, pp.893-901, 2009.
DOI : 10.1152/ajpheart.00414.2009

Y. Ovadya and V. Krizhanovsky, Senescent cells: SASPected drivers of age-related pathologies, Biogerontology, vol.7, issue.6, pp.627-642, 2014.
DOI : 10.1111/j.1474-9726.2008.00377.x

J. Coppé, Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor, PLoS Biology, vol.49, issue.12, p.301, 2008.
DOI : 10.1371/journal.pbio.0060301.sd018

A. Freund, C. K. Patil, and J. Campisi, p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype, The EMBO Journal, vol.7, issue.8, pp.1536-1548, 2011.
DOI : 10.1111/j.1474-9726.2008.00377.x

J. C. Acosta, A complex secretory program orchestrated by the inflammasome controls paracrine senescence, Nature Cell Biology, vol.122, issue.8, pp.978-990, 2013.
DOI : 10.1007/s00401-011-0841-z

S. F. Mause and C. Weber, Microparticles: Protagonists of a Novel Communication Network for Intercellular Information Exchange, Circulation Research, vol.107, issue.9, pp.1047-1057, 2010.
DOI : 10.1161/CIRCRESAHA.110.226456

F. Lovren and S. Verma, Evolving Role of Microparticles in the Pathophysiology of Endothelial Dysfunction, Clinical Chemistry, vol.59, issue.8, pp.1166-1174, 2013.
DOI : 10.1373/clinchem.2012.199711

F. Dignat-george and C. M. Boulanger, The Many Faces of Endothelial Microparticles, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.1, pp.27-33, 2011.
DOI : 10.1161/ATVBAHA.110.218123

J. Coppé, P. Desprez, A. Krtolica, and J. Campisi, The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression, Annual Review of Pathology: Mechanisms of Disease, vol.5, issue.1, pp.99-118, 2010.
DOI : 10.1146/annurev-pathol-121808-102144

E. Suzuki, M. Takahashi, S. Oba, and H. Nishimatsu, Oncogene-and Oxidative Stress-Induced Cellular Senescence Shows Distinct Expression Patterns of Proinflammatory Cytokines in, Vascular Endothelial Cells. Sci. World J, vol.2013, p.754735, 2013.

R. J. Medina, Ex Vivo Expansion of Human outgrowth Endothelial Cells Leads to IL-8-Mediated Replicative Senescence and Impaired Vasoreparative Function, STEM CELLS, vol.35, issue.8, pp.1657-1668, 2013.
DOI : 10.1042/CBI20090225

Z. Wu, Role of p38 mitogen-activated protein kinase in vascular endothelial aging: Interaction with Arginase-II and S6K1 signaling pathway, Aging, vol.7, issue.1, pp.70-81, 2015.
DOI : 10.18632/aging.100722

J. L. Avalos, K. M. Bever, and C. Wolberger, Mechanism of Sirtuin Inhibition by Nicotinamide: Altering the NAD+ Cosubstrate Specificity of a Sir2 Enzyme, Molecular Cell, vol.17, issue.6, pp.855-868, 2005.
DOI : 10.1016/j.molcel.2005.02.022

R. M. Van-gorp, Glutathione oxidation in calcium- and p38 MAPK-dependent membrane blebbing of endothelial cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1591, issue.1-3, pp.129-138, 2002.
DOI : 10.1016/S0167-4889(02)00273-2

A. M. Curtis, p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles, Journal of Thrombosis and Haemostasis, vol.320, issue.4, pp.701-709, 2009.
DOI : 10.4049/jimmunol.177.3.1975

J. Guay, Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27, J. Cell Sci, vol.110, pp.357-368, 1997.

M. Pons, S. W. Cousins, K. G. Csaky, G. Striker, and M. E. Marin-castaño, Cigarette Smoke-Related Hydroquinone Induces Filamentous Actin Reorganization and Heat Shock Protein 27 Phosphorylation through p38 and Extracellular Signal-Regulated Kinase 1/2 in Retinal Pigment Epithelium, The American Journal of Pathology, vol.177, issue.3, pp.1198-1213, 2010.
DOI : 10.2353/ajpath.2010.091108

S. P. Davies, H. Reddy, M. Caivano, and P. Cohen, Specificity and mechanism of action of some commonly used protein kinase inhibitors, Biochemical Journal, vol.351, issue.1, pp.95-105, 2000.
DOI : 10.1042/bj3510095

K. R. Rosenbloom, ENCODE Data in the UCSC Genome Browser: year 5 update, Nucleic Acids Research, vol.41, issue.D1, pp.56-63, 2013.
DOI : 10.1093/nar/gks1172

R. Wang, Impaired DNA Damage Response, Genome Instability, and Tumorigenesis in SIRT1 Mutant Mice, Cancer Cell, vol.14, issue.4, pp.312-323, 2008.
DOI : 10.1016/j.ccr.2008.09.001

URL : https://doi.org/10.1016/j.ccr.2008.09.001

K. E. Paschalaki, Dysfunction of endothelial progenitor cells from smokers and COPD patients due to increased DNA damage and senescence, Stem Cells Dayt. Ohio, pp.10-1002, 2013.

D. A. Ingram, In Vitro Hyperglycemia or a Diabetic Intrauterine Environment Reduces Neonatal Endothelial Colony-Forming Cell Numbers and Function, Diabetes, vol.57, issue.3, pp.724-731, 2008.
DOI : 10.2337/db07-1507

URL : http://diabetes.diabetesjournals.org/content/diabetes/57/3/724.full.pdf

K. Busch, Fundamental properties of unperturbed haematopoiesis from stem cells in vivo, Nature, vol.23, issue.7540, pp.542-546, 2015.
DOI : 10.1093/nar/23.24.5080

H. Fujinaga, Hyperoxia disrupts vascular endothelial growth factor-nitric oxide signaling and decreases growth of endothelial colony-forming cells from preterm infants, AJP: Lung Cellular and Molecular Physiology, vol.297, issue.6, pp.1160-1169, 2009.
DOI : 10.1152/ajplung.00234.2009

C. Andrys, Umbilical cord blood concentrations of IL-6, IL-8, and MMP-8 in pregnancy complicated by preterm premature rupture of the membranes and histological chorioamnionitis, Neuro Endocrinol. Lett, vol.31, pp.857-863, 2010.

D. Xu and H. Tahara, The role of exosomes and microRNAs in senescence and aging, Advanced Drug Delivery Reviews, vol.65, issue.3, pp.368-375, 2013.
DOI : 10.1016/j.addr.2012.07.010

M. Alique, Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification, Aging, vol.9, pp.778-789, 2017.
DOI : 10.18632/aging.101191

M. Abbas, Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and ThrombogenicityClinical Perspective, Circulation, vol.135, issue.3, pp.280-296, 2017.
DOI : 10.1161/CIRCULATIONAHA.116.017513

D. Burger, Endothelial Microparticle Formation by Angiotensin II Is Mediated via Ang II Receptor Type I/NADPH Oxidase/ Rho Kinase Pathways Targeted to Lipid Rafts, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.8, pp.1898-1907, 2011.
DOI : 10.1161/ATVBAHA.110.222703

URL : http://atvb.ahajournals.org/content/atvbaha/31/8/1898.full.pdf

D. Burger, Microparticles Induce Cell Cycle Arrest Through Redox-Sensitive Processes in Endothelial Cells: Implications in Vascular Senescence, Journal of the American Heart Association, vol.1, issue.3, p.1842, 2012.
DOI : 10.1161/JAHA.112.001842

C. Davis, MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence, p.525, 2017.
DOI : 10.1089/ten.tea.2016.0525

K. Weiner-gorzel, Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells, Cancer Medicine, vol.14, issue.5, pp.745-758, 2015.
DOI : 10.1186/1471-2164-14-508

A. Forterre, Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation, Cell Cycle, vol.11, issue.1, pp.78-89, 2014.
DOI : 10.1186/cc6176

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.26808?needAccess=true

M. Yáñez-mó, Biological properties of extracellular vesicles and their physiological functions, Journal of Extracellular Vesicles, vol.40, issue.1, p.27066, 2015.
DOI : 10.1093/nar/gks658

Y. Berda-haddad, Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1?, Proc. Natl. Acad. Sci. USA, pp.20684-20689, 2011.

K. Kandere-grzybowska, IL-1 Induces Vesicular Secretion of IL-6 without Degranulation from Human Mast Cells, The Journal of Immunology, vol.171, issue.9, pp.4830-4836, 1950.
DOI : 10.4049/jimmunol.171.9.4830

F. Santilli, Microparticles as new markers of cardiovascular risk in diabetes and beyond, Thrombosis and Haemostasis, vol.116, issue.2, 2016.
DOI : 10.1160/TH16-03-0176

Y. Guo, A. Xu, and Y. Wang, SIRT1 in endothelial cells as a novel target for the prevention of early vascular ageing, J. Cardiovasc. Pharmacol, pp.10-10970000000000000344, 2015.

T. Hayakawa, SIRT1 Suppresses the Senescence-Associated Secretory Phenotype through Epigenetic Gene Regulation, PLOS ONE, vol.14, issue.1, p.116480, 2015.
DOI : 10.1371/journal.pone.0116480.g007

Y. Wan, SIRT1-mediated epigenetic downregulation of plasminogen activator inhibitor-1 prevents vascular endothelial replicative senescence, Aging Cell, vol.106, issue.5, pp.890-899, 2014.
DOI : 10.1161/CIRCRESAHA.109.215483

J. Kim, Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells, American Journal of Physiology - Heart and Circulatory Physiology, vol.309, issue.3, pp.425-433, 2015.
DOI : 10.1152/ajpheart.00438.2014

F. Rodier, Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion, Nature Cell Biology, vol.11, issue.8, pp.973-979, 2009.
DOI : 10.1074/jbc.M408650200

URL : http://www.nature.com/ncb/journal/v11/n10/pdf/ncb1009-1272a.pdf

L. A. Green, Endogenous Transmembrane TNF-Alpha Protects Against Premature Senescence in Endothelial Colony Forming CellsNovelty and Significance, Circulation Research, vol.118, issue.10, pp.1512-1524, 2016.
DOI : 10.1161/CIRCRESAHA.116.308332

URL : http://circres.ahajournals.org/content/circresaha/118/10/1512.full.pdf

P. Oberdoerffer, SIRT1 Redistribution on Chromatin Promotes Genomic Stability but Alters Gene Expression during Aging, Cell, vol.135, issue.5, pp.907-918, 2008.
DOI : 10.1016/j.cell.2008.10.025

S. Zhou, Repression of P66Shc Expression by SIRT1 Contributes to the Prevention of Hyperglycemia-Induced Endothelial Dysfunction, Circulation Research, vol.109, issue.6, pp.639-648, 2011.
DOI : 10.1161/CIRCRESAHA.111.243592

T. A. Rando and H. Chang, Aging, Rejuvenation, and Epigenetic Reprogramming: Resetting the Aging Clock, Cell, vol.148, issue.1-2, pp.46-57, 2012.
DOI : 10.1016/j.cell.2012.01.003

URL : https://doi.org/10.1016/j.cell.2012.01.003

V. Calvanese, E. Lara, A. Kahn, and M. F. Fraga, The role of epigenetics in aging and age-related diseases, Ageing Research Reviews, vol.8, issue.4, pp.268-276, 2009.
DOI : 10.1016/j.arr.2009.03.004

Y. Zhu, The Achilles??? heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, vol.445, issue.4, pp.644-658, 2015.
DOI : 10.1038/nature05529

D. Alimbetov, Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2, Biogerontology, vol.445, issue.7128, pp.305-315, 2016.
DOI : 10.1038/nature05529

S. L. Maas, J. De-vrij, and M. L. Broekman, Quantification and Size-profiling of Extracellular Vesicles Using Tunable Resistive Pulse Sensing, Journal of Visualized Experiments, issue.92, pp.10-3791, 2014.
DOI : 10.3791/51623

S. Robert, High-Sensitivity Flow Cytometry Provides Access to Standardized Measurement of Small-Size Microparticles--Brief Report, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.4, pp.1054-1058, 2012.
DOI : 10.1161/ATVBAHA.111.244616

S. Simoncini, TRAIL/Apo2L Mediates the Release of Procoagulant Endothelial Microparticles Induced by Thrombin In Vitro: A Potential Mechanism Linking Inflammation and Coagulation, Circulation Research, vol.104, issue.8, pp.943-951, 2009.
DOI : 10.1161/CIRCRESAHA.108.183285

R. Lacroix, Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop, Journal of Thrombosis and Haemostasis, vol.7, issue.11, pp.2571-2574, 2010.
DOI : 10.1111/j.1538-7836.2008.03200.x

E. A. Jaffe, R. L. Nachman, C. G. Becker, and C. Minick, Culture of Human Endothelial Cells Derived from Umbilical Veins. IDENTIFICATION BY MORPHOLOGIC AND IMMUNOLOGIC CRITERIA, Journal of Clinical Investigation, vol.52, issue.11, pp.2745-2756, 1973.
DOI : 10.1172/JCI107470

A. L. Akeson and C. W. Woods, A fluorometric assay for the quantitation of cell adherence to endothelial cells, Journal of Immunological Methods, vol.163, issue.2, pp.181-185, 1993.
DOI : 10.1016/0022-1759(93)90121-M

A. A. Vaporciyan, M. L. Jones, and P. A. Ward, Rapid analysis of leukocyte-endothelial adhesion, Journal of Immunological Methods, vol.159, issue.1-2, pp.93-100, 1993.
DOI : 10.1016/0022-1759(93)90145-W

F. Thuny, The Gene Expression Analysis of Blood Reveals S100A11 and AQP9 as Potential Biomarkers of Infective Endocarditis, PLoS ONE, vol.168, issue.2, p.31490, 2012.
DOI : 10.1371/journal.pone.0031490.s001

F. Magdinier and A. P. Wolffe, Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia, Proc. Natl. Acad. Sci. USA 98, pp.4990-4995, 2001.
DOI : 10.1096/fj.14.11.1585

URL : https://hal.archives-ouvertes.fr/hal-01663920