Chromatin Boundaries and Chromatin Domains

To cite this version:

HAL Id: hal-01663828
https://hal-amu.archives-ouvertes.fr/hal-01663828
Submitted on 14 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Insulator elements were first described in *Drosophila*, but subsequent studies have shown that they are present in vertebrates as well (for review, see West et al. 2002). Over the past several years we have focused our attention on the properties of an insulator at the 5′ end of the chicken β-globin locus that has begun to provide an understanding of how such elements function. This work, as well as studies in other laboratories, has revealed that there are two distinct kinds of insulator activities, which are different in their function. The first of these is the enhancer-blocking activity, which can prevent interaction between a distal enhancer and a promoter when placed between them (Fig. 1A). This has the effect of preventing an incorrect interaction between regulatory elements in adjacent, but separately regulated, gene systems. The second insulator function is connected with barrier activity, which prevents condensed heterochromatin from extending into adjacent chromatin domains carrying transcriptionally active genes (Fig. 1B).

The chicken β-globin locus extends over 30 kb. It contains four members of the globin gene family, with different programs of expression during development (Fig. 2), which have been studied extensively (Felsenfeld 1993). Strong positive regulatory elements, components of the locus control region (LCR), are distributed both upstream of the gene cluster and within it. Further upstream is a DNase I “hypersensitive site,” 5′ HS4, which, unlike others in the locus, is not erythroid-specific, but is nuclease sensitive in all cells that have been tested (Reitman and Felsenfeld 1990). It seemed an attractive possibility that this marked the 5′ end of the open chromatin domain; in fact, it was shown not long afterward that immediately upstream of 5′ HS4 there is an abrupt decrease of nuclease sensitivity and histone acetylation in globin-expressing cells, consistent with a transition from the open chromatin of the globin locus to a more inactive, condensed chromatin structure (Hebbes et al. 1994). We explored the possibility that this element might have the properties of an insulator (Chung et al. 1997).

ENHANCER-BLOCKING INSULATION AND CTCF

The analysis of the gypsy element in *Drosophila* had provided the first example of enhancer-blocking action, and we began our studies by testing whether a 1.2-kb fragment containing 5′ HS4 could similarly prevent enhancer–promoter interaction. The assay we devised placed the element between a strong erythroid-specific enhancer and promoter that were driving expression of a drug resistance gene. The number of colonies able to grow under selective conditions was used as a measure of enhancer-blocking activity. We showed that the 1.2-kb element reduced colony number by an order of magnitude, but only when placed between the enhancer and promoter (Chung et al. 1997). A 250-bp “core” element derived from this fragment retained the enhancer-blocking function and allowed us to dissect the activity further. We report here on subsequent results that followed from these observations.

DNase footprinting experiments with nuclear extracts showed that there were five discrete protected regions within the 250-bp core, which could be tested individually for enhancer-blocking activity (Fig. 3) (Chung et al. 1997). Footprint II was necessary and sufficient for activity in our assay and provided a DNA sequence that could be used in gel retardation assays to follow purification of the protein that bound to it. This protein, CTCF, had been described earlier, but had not been associated with insulator activity (Bell et al. 1999).
CTCF is a member of the zinc finger family, with the unusually large number of 11 fingers. Since its identification as the active agent in the enhancer-blocking activity of the 5′ HS4 chicken β-globin element, it has been implicated in similar functions within a wide variety of vertebrate loci, including the 3′ end of the chicken β-globin locus (Saitoh et al. 2000). CTCF binding sites with enhancer-blocking action have been found within the mouse and human β-globin loci (Farrell et al. 2002; Tanimoto et al. 2003), and associated with the Tsix antisense gene in the mouse choice/imprinting center involved in control of X chromosome inactivation (Chao et al. 2002). Recent studies have identified a single CTCF site (Fig. 4) located between the mouse T cell receptor α (TCR α) gene and the downstream Dad 1 gene, where it may play a role in preventing inappropriate interaction between enhancers committed to one gene and promoter controlling the other (Magdinier et al. 2004).

Perhaps the most convincing evidence for the biological role of such insulators is provided by studies of the regulation of the mouse and human IgG2/H19 imprinted locus (Bell and Felsenfeld 2000; Haef et al. 2000; Kanduri et al. 2000). The H19 gene is expressed only from the maternally transmitted allele, and IgG2 only from the paternal (Fig. 5). IgG2 expression is shut down on the maternal allele because of the presence of an insulator element with multiple binding sites for CTCF, which blocks the action of downstream endodermal enhancers that normally activate IgG2. These DNA sites are methylated on the imprinted paternal allele, which prevents CTCF binding, inactivates the insulator, and activates IgG2 expression.

Since it seemed unlikely that CTCF could carry out this function without the intervention of other proteins, the next step was to search for factors with which it interacted. We expressed a double epitope-tagged version of the protein and immunopurified complexes containing candidate cofactors (Yusufzai et al. 2004). Among the proteins purified in this way were poly ADP-ribose polymers, Set1, H2A, H2A.Z, and, most notably, the nucleolar protein, nucleophosmin, which was present in the greatest abundance. When a singly purified complex was centrifuged on a glycerol gradient, some of the CTCF cosedimented with nucleophosmin in two fractions, indicating that a well-defined complex had formed between them. Chromatin immunoprecipitation (ChIP) using antibodies against CTCF and nucleophosmin showed that these proteins also colocalized in vivo over the two known CTCF sites at either end of the chicken β-globin locus (Fig. 6A). Fluorescence in situ hybridization analysis of cell lines carrying multiple copies of the insulator showed localization of the insulator elements at the surface of the nucleolus, where nucleophosmin is also concentrated. Mutation of the CTCF site abolished localization (Yusufzai et al. 2004). In other experiments, it was shown also that CTCF can form homodimers and probably higher-order oligomers as well.

The class of models suggested by these results is quite similar to one proposed earlier by Corces and his collaborators to explain the action of the gypsy element in Drosophila (Gerasimova et al. 2000). These models invoke the generation of separate loop domains, mediated by the protein bound to the insulators, to generate structures in which enhancer and promoter occupy separate topologically independent loops. The β-globin insulator is tethered to the nucleolar surface by its interaction with nucleophosmin, and this would be sufficient to create such domains (Fig. 6B). However, the ability of CTCF molecules to interact with one another would also result in the formation of loops. In the case of the gypsy element, both clustering and tethering to the nuclear envelope have been observed.

There are two kinds of enhancer mechanisms arising from these models that could serve to explain insulation. Either the enhancer can no longer make a necessary physical contact with the promoter, or some processive signal that normally passes from enhancer to promoter is blocked at the point where the insulator helps to form the

Figure 2. A map (not to scale) of the chicken β-globin domain and its neighbors. The distance between HS4, the globin 5′ insulator element, and 3 HS, the CTCF site at the 3′ end of the domain, is about 30 kb.
BOUNDARY FUNCTIONS AND THE SEPARATION OF INSULATOR ACTIVITIES

The second kind of insulator serves to provide a barrier against invasion of an open chromatin region by heterochromatin. We devised an assay in which we measured the expression in erythroid cell lines of an integrated transgene surrounded by the element to be tested for barrier activity. In most lines carrying unprotected constructs, expression is extinguished by 20–80 days in culture. This probably reflects integration into endogenous sites that are silent; some lines do continue to express the reporter gene, in many cases presumably by trapping a strong enhancer (Pikaart et al. 1998). We tested the ability of both the full 1.2-kb globin HS4 insulator element and the 250-bp “core” to protect against extinction of expression. When the reporter is flanked on each side by two copies of either of these elements, silencing does not occur. Thus the globin insulator also possesses the second, “barrier” activity that protects against position effect.

The obvious next step was to dissect the core element to isolate the components responsible for this activity. We undertook successive deletion of each of the five footprinted regions of the core described above. To our surprise, deletion of the CTCF binding site had no effect on the barrier activity. In contrast, deletion of any one of the other four footprint regions severely inhibited barrier function. The HS4 insulator enhancer-blocking function is therefore separable from the barrier function; HS4 is a compound element with interspersed regulatory sequences (Recillas-Targa et al. 2002).

Figure 4. The distribution of histone H3 acetylation and CTCF binding in vivo, determined by chromatin immunoprecipitation, for the region between the mouse T cell receptor α gene and the downstream Dad1 gene. Experiments were carried out both in the fibroblast line NIH-3T3 and in a lymphocyte line, AKR1. Hypersensitive sites 1–6 previously described (Zhong and Krangel 1999; Ortiz et al. 2001) are shown below as dark vertical bars. The peak at 0.75 kb corresponds to hypersensitive site 1′. (Reprinted, with permission, from Magdinier et al. 2004.)

Figure 5. The imprinted Igf2/H19 locus in mouse. The imprinted control region (ICR) of the maternally transmitted allele binds CTCF and acts as an enhancer-blocking insulator to prevent the downstream endodermal enhancers (E) from activating Igf2 expression. In the paternal allele, the DNA of the ICR is methylated, CTCF does not bind, and the enhancers can activate Igf2 expression (Bell and Felsenfeld 2000; see also Hark et al. 2000; Kanduri et al. 2000). (Reprinted, with permission, from Bell and Felsenfeld 2000. http://www.nature.com)
HISTONE MODIFICATIONS AND BARRIER FUNCTION

A clue as to how barriers might be established and maintained comes from studies of the distribution of histone modifications over the \(\beta\)-globin locus. Chromatin immunoprecipitation studies show that there are peaks of histone acetylation over 5´HS4 that are present in every cell type that has been studied (Fig. 7) (Litt et al. 2001b). Immediately upstream of 5´HS4 and the \(\beta\)-globin locus is a region of condensed chromatin (see below), marked by dimethylation of histone H3 lysine 9 (Litt et al. 2001a). This methylation mark is characteristic of heterochromatin. Schemes have been proposed in which the presence of a high level of H3 lysine 9 acetylation at HS4 could prevent the adjacent histones from being methylated at lysine 9, preventing the advance of the propagating silencing signal. When the HS4 insulator flanks a transgene, the targeted histone acetylation by the insulators may prevent the influence of surrounding endogenous condensed chromatin in the same way.

Recent evidence from our laboratories suggests that other modifications induced by HS4 may similarly block the advance of other silencing signals. A similar mechanism has been proposed for the barrier function at the end of the mating type locus in yeast (Donze and Kamakaka 2001).

In this connection it is interesting to note that silencing of the integrated but uninsulated reporter used in our barrier assays can be prevented by growing the cells in the constant presence of Trichostatin A, which inhibits histone deacetylation (Mutskov et al. 2002). In the absence of such inhibition, the kinetics of loss of histone H3 and H4 acetylation closely parallel loss of transcript; promoter DNA methylation, usually associated with silencing, occurs only afterward. The kinetics of silencing exclude DNA methylation as the primary causative event in this transgene system (Mutskov and Felsenfeld 2004).

We are presently dissecting the HS4 region further to identify the proteins responsible for the barrier behavior. It is already clear that multiple proteins are involved, and that these include histone-modifying enzymes that correspond to the histone modifications observed in the neighborhood of the insulator.

CONDENSED CHROMATIN

The condensed chromatin region that begins immediately upstream of 5´HS4 extends for about 16 kb and is followed at its 5´ end by a gene for an erythroid-specific folate receptor (Prioleau et al. 1999). It is important to understand the structure of such regions, which in vivo may well affect the expression of nearby genes. Our early studies of this region showed that it was composed of regularly arrayed nucleosomes, and that the DNA within it was highly methylated at CpG sites. We therefore took advantage of accessible and unmethylated HpaII restriction sites at the borders of the region to excise it from the nucleus. Sedimentation in a sucrose gradient revealed an essentially monodisperse fragment as revealed either by Southern blotting or polymerase chain reaction (PCR) analysis (Fig. 8). The individual gradient fractions could be studied in the analytical ultracentrifuge, yielding a precise value for the sedimentation coefficient of the heterochromatin particle. We were also able to measure the buoyant density of the particle. The combined density and sedimentation information gave its frictional coefficient, a measure of particle shape. The measured value corresponds to an extended rod-like particle, and is consistent with results obtained from electron micrograph and diffraction studies of chromatin fibers that detect a rod-like structure about 30 nm in diameter (Ghirlando et al. 2004).
CONCLUSIONS

The original purpose of this study was to investigate the structure of chromatin at the boundaries of the chicken β-globin locus and to understand how longer-range chromatin structure might mediate globin gene expression. During the ensuing studies we identified a complex insulator element at the 5´ end of the locus that separated it from an extended adjacent heterochromatic region and, beyond that, a folate receptor gene with a different program of expression from that of the globin genes. Dissection of the insulator showed that it had separate elements capable both of serving as a barrier to heterochromatinization and of blocking distal enhancers. The latter activity was attributable to binding of the protein CTCF, and we were able to show that CTCF insulator sites are present elsewhere in the genome, notably at the Igf2/H19 imprinted locus. Recent results show that CTCF can interact both with itself and with a nucleolar protein, nucleophosmin; this suggests possible mechanisms of enhancer-blocking action. Barrier activity is also mediated by the globin insulator, but recent results in our laboratory show that it involves a different set of binding sites and proteins, appropriate to what we believe is its task of preventing the immediately adjacent, compact, and inactive 16-kb heterochromatin domain from advancing.

This series of investigations also has revealed a lot about the role of chromatin structure in regulating gene expression. The analysis of the developmentally regulated distribution of histone modifications over the β-globin region provides important correlations between these modifications and the state of expression over the globin and folate receptor genes, as well as the inactive 16-kb heterochromatic region. Recent data from our laboratory (G. Felsenfeld et al., unpub.) extends this work to a variety of other modifications, with the ultimate goal of determining the time course of activation and inactivation events. The studies of enhancer-blocking activity take us in yet another direction, calling attention to the likely importance of higher-order structures and interaction with components of the nuclear architecture in regulating expression. The study of insulators has thus provided a powerful way of studying problems of chromatin structure and gene expression that might otherwise be difficult to address.
REFERENCES

Magdiner F., Yusufzai T.M., and Felsenfeld G. 2004. Both CTCF-dependent and -independent insulators are found between the mouse T cell receptor alpha and Dad1 genes. J. Biol. Chem. 279:25381.

