A. P. Bird and A. P. Wolffe, Methylation-Induced Repression??? Belts, Braces, and Chromatin, Cell, vol.99, issue.5, pp.451-454, 1999.
DOI : 10.1016/S0092-8674(00)81532-9

URL : https://doi.org/10.1016/s0092-8674(00)81532-9

B. Hendrich and A. Bird, Identification and Characterization of a Family of Mammalian Methyl-CpG Binding Proteins, Molecular and Cellular Biology, vol.18, issue.11, pp.6538-6547, 1998.
DOI : 10.1128/MCB.18.11.6538

P. A. Wade, Methyl CpG-binding proteins and transcriptional repression, BioEssays, vol.98, issue.12, pp.1131-1137, 2001.
DOI : 10.1073/pnas.101617298

F. Fuks, P. J. Hurd, D. Wolf, X. Nan, A. P. Bird et al., The Methyl-CpG-binding Protein MeCP2 Links DNA Methylation to Histone Methylation, Journal of Biological Chemistry, vol.278, issue.6, pp.4035-4040, 2003.
DOI : 10.1038/nature731

P. L. Jones, G. J. Veenstra, P. A. Wade, D. Vermaak, S. U. Kass et al., Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription, Nature Genetics, vol.267, issue.2, pp.187-191, 1998.
DOI : 10.1006/jmbi.1997.0899

X. Nan, H. H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner et al., Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex, Nature, vol.314, issue.6683, pp.386-389, 1998.
DOI : 10.1042/bj3140631

P. A. Wade, A. Gegonne, P. L. Jones, E. Ballestar, F. Aubry et al., Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation, Nature Genet, vol.23, pp.62-66, 1999.

J. Boeke, O. Ammerpohl, S. Kegel, U. Moehren, and R. Renkawitz, The Minimal Repression Domain of MBD2b Overlaps with the Methyl-CpG-binding Domain and Binds Directly to Sin3A, Journal of Biological Chemistry, vol.19, issue.45, pp.34963-34967, 2000.
DOI : 10.1038/561

H. H. Ng, P. Jeppesen, and A. Bird, Active Repression of Methylated Genes by the Chromosomal Protein MBD1, Molecular and Cellular Biology, vol.20, issue.4, pp.1394-1406, 2000.
DOI : 10.1128/MCB.20.4.1394-1406.2000

N. Fujita, S. Watanabe, T. Ichimura, S. Tsuruzoe, Y. Shinkai et al., Methyl-CpG Binding Domain 1 (MBD1) Interacts with the Suv39h1-HP1 Heterochromatic Complex for DNA Methylation-based Transcriptional Repression, Journal of Biological Chemistry, vol.23, issue.26, pp.24132-24138, 2003.
DOI : 10.1038/30764

S. A. Sarraf and I. Stancheva, Methyl-CpG Binding Protein MBD1 Couples Histone H3 Methylation at Lysine 9 by SETDB1 to DNA Replication and Chromatin Assembly, Molecular Cell, vol.15, issue.4, pp.595-605, 2004.
DOI : 10.1016/j.molcel.2004.06.043

URL : https://doi.org/10.1016/j.molcel.2004.06.043

T. M. Smith, M. K. Lee, C. I. Szabo, N. Jerome, M. Mceuen et al., Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1., Genome Research, vol.6, issue.11, pp.1029-1049, 1996.
DOI : 10.1101/gr.6.11.1029

C. Fournier, Y. Goto, E. Ballestar, K. Delaval, A. M. Hever et al., Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes, The EMBO Journal, vol.21, issue.23, pp.6560-6570, 2002.
DOI : 10.1093/emboj/cdf655

URL : http://embojnl.embopress.org/content/embojnl/21/23/6560.full.pdf

E. Ballestar, M. F. Paz, L. Valle, S. Wei, M. F. Fraga et al., Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer, The EMBO Journal, vol.9, issue.23, pp.6335-6345, 2003.
DOI : 10.1093/emboj/cdg604

R. E. Amir, I. B. Van-den-veyver, M. Wan, C. Q. Tran, U. Francke et al., Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2, Nature Genet, vol.23, pp.185-188, 1999.

R. Z. Chen, S. Akbarian, M. Tudor, and R. Jaenisch, Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice, Nature Genetics, vol.27, issue.3, pp.327-331, 2001.
DOI : 10.1038/85906

J. Guy, B. Hendrich, M. Holmes, J. E. Martin, and A. Bird, A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome, Nature Genetics, vol.27, issue.3, pp.322-326, 2001.
DOI : 10.1038/85899

X. Zhao, T. Ueba, B. R. Christie, B. Barkho, M. J. Mcconnell et al., Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function, Proc. Natl Acad. Sci. USA, pp.6777-6782, 2003.
DOI : 10.1002/path.1024

B. Hendrich, J. Guy, B. Ramsahoye, V. A. Wilson, and A. Bird, Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development, Genes & Development, vol.15, issue.6, pp.710-723, 2001.
DOI : 10.1101/gad.194101

URL : http://genesdev.cshlp.org/content/15/6/710.full.pdf

W. G. Chen, Q. Chang, Y. Lin, A. Meissner, A. E. West et al., Derepression of BDNF Transcription Involves Calcium-Dependent Phosphorylation of MeCP2, Science, vol.302, issue.5646, pp.885-889, 2003.
DOI : 10.1126/science.1086446

K. Martinowich, D. Hattori, H. Wu, S. Fouse, F. He et al., DNA Methylation-Related Chromatin Remodeling in Activity-Dependent Bdnf Gene Regulation, Science, vol.302, issue.5646, pp.890-893, 2003.
DOI : 10.1126/science.1090842

S. Horike, S. Cai, M. Miyano, J. F. Cheng, and T. Kohwi-shigematsu, Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome, Nature Genetics, vol.96, issue.Suppl 1, pp.31-40, 2005.
DOI : 10.1073/pnas.96.9.5203

C. F. Xu, M. A. Brown, H. Nicolai, J. A. Chambers, B. L. Griffiths et al., Isolation and characterisation of the NBR2 gene which lies head to head with the human BRCA1 gene, Human Molecular Genetics, vol.6, issue.7, pp.1057-1062, 1997.
DOI : 10.1093/hmg/6.7.1057

D. T. Butcher, D. N. Mancini-dinardo, T. K. Archer, and D. I. Rodenhiser, DNA binding sites for putative methylation boundaries in the unmethylated region of theBRCA1 promoter, International Journal of Cancer, vol.81, issue.5, pp.669-678, 2004.
DOI : 10.1155/1998/298530

F. Magdinier, L. M. Billard, G. Wittmann, L. Frappart, M. Benchaib et al., Regional methylation of the 5' end CpG island of BRCA1 is associated with reduced gene expression in human somatic cells, The FASEB Journal, vol.14, issue.11, pp.1585-1594, 2000.
DOI : 10.1096/fj.14.11.1585

URL : https://hal.archives-ouvertes.fr/hal-01663881

J. C. Rice and B. W. Futscher, Transcriptional repression of BRCA1 by aberrant cytosine methylation, histone hypoacetylation and chromatin condensation of the BRCA1 promoter, Nucleic Acids Research, vol.28, issue.17, pp.3233-3239, 2000.
DOI : 10.1093/nar/28.17.3233

L. M. Billard, F. Magdinier, G. M. Lenoir, L. Frappart, and R. Dante, MeCP2 and MBD2 expression during normal and pathological growth of the human mammary gland, Oncogene, vol.21, issue.17, pp.2704-2712, 2002.
DOI : 10.1073/pnas.191375098

URL : https://hal.archives-ouvertes.fr/hal-01663809

F. Magdinier, D. Venezia, N. Lenoir, G. M. Frappart, L. Dante et al., BRCA1 expression during prenatal development of the human mammary gland, Oncogene, vol.18, issue.27, pp.4039-4043, 1999.
DOI : 10.1007/978-1-4899-5043-7_2

URL : https://hal.archives-ouvertes.fr/hal-01663803

S. Ribieras, F. Magdinier, D. Leclerc, G. Lenoir, L. Frappart et al., Abundance ofBRCA1 transcripts in human cancer and lymphoblastoid cell lines carryingBRCA1 germ-line alterations, International Journal of Cancer, vol.14, issue.5, pp.715-718, 1997.
DOI : 10.1038/sj.onc.1200924

T. R. Brummelkamp, R. Bernards, and R. Agami, A System for Stable Expression of Short Interfering RNAs in Mammalian Cells, Science, vol.296, issue.5567, pp.550-553, 2002.
DOI : 10.1126/science.1068999

M. Frommer, L. E. Mcdonald, D. S. Millar, C. M. Collis, F. Watt et al., A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands., Proc. Natl Acad. Sci. USA, pp.1827-1831, 1992.
DOI : 10.1073/pnas.89.5.1827

R. R. Meehan, J. D. Lewis, and A. P. Bird, Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA, Nucleic Acids Research, vol.20, issue.19, pp.5085-5092, 1992.
DOI : 10.1093/nar/20.19.5085

M. F. Fraga, E. Ballestar, G. Montoya, P. Taysavang, P. A. Wade et al., The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties, Nucleic Acids Research, vol.31, issue.6, pp.1765-1774, 2003.
DOI : 10.1093/nar/gkg249

A. El-osta, P. Kantharidis, J. R. Zalcberg, and A. P. Wolffe, Precipitous Release of Methyl-CpG Binding Protein 2 and Histone Deacetylase 1 from the Methylated Human Multidrug Resistance Gene (MDR1) on Activation, Molecular and Cellular Biology, vol.22, issue.6, pp.1844-1857, 2002.
DOI : 10.1128/MCB.22.6.1844-1857.2002

C. T. Nguyen, F. A. Gonzales, and P. A. Jones, Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation, Nucleic Acids Research, vol.29, issue.22, pp.4598-4606, 2001.
DOI : 10.1093/nar/29.22.4598

M. Sekimata and Y. Homma, Sequence-specific transcriptional repression by an MBD2-interacting zinc finger protein MIZF, Nucleic Acids Research, vol.32, issue.2, pp.590-597, 2004.
DOI : 10.1093/nar/gkh249

URL : https://academic.oup.com/nar/article-pdf/32/2/590/9490677/gkh249.pdf

S. Thakur and C. M. Croce, Positive Regulation of the BRCA1 Promoter, Journal of Biological Chemistry, vol.269, issue.13, pp.8837-8843, 1999.
DOI : 10.1073/pnas.87.7.2705

C. F. Xu, J. A. Chambers, and E. Solomon, Gene, Journal of Biological Chemistry, vol.375, issue.34, pp.20994-20997, 1997.
DOI : 10.1038/375541b0

URL : https://hal.archives-ouvertes.fr/hal-01389059

M. M. Pao, M. Tsutsumi, G. Liang, E. Uzvolgyi, F. A. Gonzales et al., The endothelin receptor B (EDNRB) promoter displays heterogeneous, site specific methylation patterns in normal and tumor cells, Human Molecular Genetics, vol.10, issue.9, pp.903-910, 2001.
DOI : 10.1093/hmg/10.9.903

C. L. Hsieh, Stability of patch methylation and its impact in regions of transcriptional initiation and elongation., Molecular and Cellular Biology, vol.17, issue.10, pp.5897-5904, 1997.
DOI : 10.1128/MCB.17.10.5897

S. U. Kass, J. P. Goddard, and R. L. Adams, Inactive chromatin spreads from a focus of methylation., Molecular and Cellular Biology, vol.13, issue.12, pp.7372-7379, 1993.
DOI : 10.1128/MCB.13.12.7372

M. C. Lorincz, D. R. Dickerson, M. Schmitt, and M. Groudine, Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells, Nature Structural & Molecular Biology, vol.17, issue.11, pp.1068-1075, 2004.
DOI : 10.1101/gad.1072303

D. N. Mancini, D. I. Rodenhiser, P. J. Ainsworth, F. P. O-'malley, S. M. Singh et al., CpG methylation within the 5??? regulatory region of the BRCA1 gene is tumor specific and includes a putative CREB binding site, Oncogene, vol.16, issue.9, pp.1161-1169, 1998.
DOI : 10.1038/sj.onc.1201630

E. Ballestar and A. P. Wolffe, Methyl-CpG-binding proteins, European Journal of Biochemistry, vol.5, issue.1, pp.1-6, 2001.
DOI : 10.1046/j.1365-2443.2000.00359.x

X. Lin and W. G. Nelson, Methyl-CpG-binding domain protein-2 mediates transcriptional repression associated with hypermethylated GSTP1 CpG islands in MCF-7 breast cancer cells, Cancer Res, vol.63, pp.498-504, 2003.

F. Magdinier and A. P. Wolffe, Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia, Proc. Natl Acad. Sci. USA, 98, pp.4990-4995, 2001.
DOI : 10.1096/fj.14.11.1585

URL : https://hal.archives-ouvertes.fr/hal-01663920

F. Yu, N. Zingler, G. Schumann, and W. H. Stratling, Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription, Nucleic Acids Research, vol.29, issue.21, pp.4493-4501, 2001.
DOI : 10.1093/nar/29.21.4493

URL : https://academic.oup.com/nar/article-pdf/29/21/4493/9906172/294493.pdf

O. J. Sansom, J. Berger, S. M. Bishop, B. Hendrich, A. Bird et al., Deficiency of Mbd2 suppresses intestinal tumorigenesis, Nature Genetics, vol.34, issue.2, pp.145-147, 2003.
DOI : 10.1038/ng1155

P. M. Campbell, V. Bovenzi, and M. Szyf, Methylated DNA-binding protein 2 antisense inhibitors suppress tumourigenesis of human cancer cell lines in vitro and in vivo, Carcinogenesis, vol.25, issue.4, pp.499-507, 2004.
DOI : 10.1093/carcin/bgh045