N. M. Allen, M. Mannion, J. Conroy, S. A. Lynch, A. Shahwan et al., The variable phenotypes of KCNQ-related epilepsy, Epilepsia, vol.110, issue.9, pp.99-105, 2014.
DOI : 10.1073/pnas.1216867110

A. Battefeld, B. T. Tran, J. Gavrilis, E. C. Cooper, and M. H. Kole, Heteromeric Kv7.2/7.3 Channels Differentially Regulate Action Potential Initiation and Conduction in Neocortical Myelinated Axons, Journal of Neuroscience, vol.34, issue.10, pp.3719-3732, 2014.
DOI : 10.1523/JNEUROSCI.4206-13.2014

C. Biervert, B. C. Schroeder, C. Kubisch, S. F. Berkovic, P. Proooing et al., A Potassium Channel Mutation in Neonatal Human Epilepsy, Science, vol.279, issue.5349, pp.403-406, 1998.
DOI : 10.1126/science.279.5349.403

R. Borgatti, C. Zucca, A. Cavallini, M. Ferrario, C. Panzeri et al., A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation, Neurology, vol.63, issue.1, pp.57-65, 2004.
DOI : 10.1212/01.WNL.0000132979.08394.6D

D. A. Brown and G. M. Passmore, Neural KCNQ (Kv7) channels, Neural KCNQ (Kv7) channels, pp.1185-1195, 2009.
DOI : 10.1113/jphysiol.1995.sp020732

URL : https://hal.archives-ouvertes.fr/hal-00013264

J. P. Cavaretta, K. R. Sherer, K. Y. Lee, E. H. Kim, R. S. Issema et al., Polarized Axonal Surface Expression of Neuronal KCNQ Potassium Channels Is Regulated by Calmodulin Interaction with KCNQ2 Subunit, PLoS ONE, vol.53, issue.7, 2014.
DOI : 10.1371/journal.pone.0103655.s005

C. Charlier, N. A. Singh, S. G. Ryan, T. B. Lewis, B. E. Reus et al., A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family, Nature Genetics, vol.49, issue.1, pp.53-55, 1998.
DOI : 10.1212/WNL.45.8.1469

H. J. Chung, Y. N. Jan, and L. Y. Jan, Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains, Proceedings of the National Academy of Sciences, vol.301, issue.5633, pp.8870-8875, 2006.
DOI : 10.1126/science.1086998

G. Coppola, P. Castaldo, E. Miraglia-del-giudice, G. Bellini, F. Galasso et al., A novel KCNQ2 K+channel mutation in benign neonatal convulsions and centrotemporal spikes, Neurology, vol.61, issue.1, pp.131-134, 2003.
DOI : 10.1212/01.WNL.0000069465.53698.BD

D. Meurs-van-der-schoor, C. Van-weissenbruch, M. Van-kempen, M. Bugiani, M. Aronica et al., Severe Neonatal Epileptic Encephalopathy and KCNQ2 Mutation: Neuropathological Substrate?, Frontiers in Pediatrics, vol.107, issue.1, p.136, 2014.
DOI : 10.3171/JNS-07/09/0628

J. J. Devaux, K. A. Kleopa, E. C. Cooper, and S. S. Scherer, KCNQ2 Is a Nodal K+ Channel, Journal of Neuroscience, vol.24, issue.5, pp.1236-1244, 2004.
DOI : 10.1523/JNEUROSCI.4512-03.2004

URL : http://www.jneurosci.org/content/jneuro/24/5/1236.full.pdf

A. Etxeberria, P. Aivar, J. A. Rodriguez-alfaro, A. Alaimo, P. Villace et al., Calmodulin regulates the trafficking of KCNQ2 potassium channels, The FASEB Journal, vol.22, issue.4, pp.1135-1143, 2008.
DOI : 10.1096/fj.07-9712com

H. Hu, K. Vervaeke, and J. F. Storm, M-Channels (Kv7/KCNQ Channels) That Regulate Synaptic Integration, Excitability, and Spike Pattern of CA1 Pyramidal Cells Are Located in the Perisomatic Region, Journal of Neuroscience, vol.27, issue.8, pp.1853-1867, 2007.
DOI : 10.1523/JNEUROSCI.4463-06.2007

T. J. Jentsch, Neuronal KCNQ potassium channels: physiology and role in disease, Nature Reviews Neuroscience, vol.1, issue.1, pp.21-30, 2000.
DOI : 10.1038/35036198

M. Kato, T. Yamagata, M. Kubota, H. Arai, S. Yamashita et al., mutation, Epilepsia, vol.71, issue.7, pp.1282-1287, 2013.
DOI : 10.1002/ana.22644

URL : https://hal.archives-ouvertes.fr/hal-00018575

W. Lange, J. Geissendörfer, A. Schenzer, J. Grötzinger, G. Seebohm et al., Refinement of the Binding Site and Mode of Action of the Anticonvulsant Retigabine on KCNQ K+ Channels, Molecular Pharmacology, vol.75, issue.2, pp.272-280, 2009.
DOI : 10.1124/mol.108.052282

W. Liu and J. J. Devaux, Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons, Molecular and Cellular Neuroscience, vol.58, pp.40-52, 2014.
DOI : 10.1016/j.mcn.2013.12.005

URL : https://hal.archives-ouvertes.fr/hal-00966188

A. Lonigro and J. J. Devaux, Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis, Brain, vol.132, issue.1, pp.260-273, 2009.
DOI : 10.1093/brain/awn281

J. C. Magee, Dendritic integration of excitatory synaptic input, Nature Reviews Neuroscience, vol.1, issue.3, pp.181-190, 2000.
DOI : 10.1038/35044552

S. Maljevic and H. Lerche, Potassium channel genes and benign familial neonatal epilepsy, Prog. Brain Res, vol.213, pp.17-53, 2014.
DOI : 10.1016/B978-0-444-63326-2.00002-8

S. Maljevic, T. V. Wuttke, and H. Lerche, 7 disorders: breakdown of a subthreshold brake, The Journal of Physiology, vol.273, issue.7, pp.1791-1801, 2008.
DOI : 10.1074/jbc.273.31.19419

F. Miceli, M. V. Soldovieri, P. Ambrosino, P. Ambrosino, V. Barrese et al., 7.2 potassium channel subunits, Proceedings of the National Academy of Sciences, vol.102, issue.6, pp.4386-4391, 2013.
DOI : 10.1093/nar/gkg520

URL : https://hal.archives-ouvertes.fr/in2p3-00553501

F. Miceli, M. V. Soldovieri, P. Ambrosino, M. De-maria, M. Migliore et al., Early-Onset Epileptic Encephalopathy Caused by Gain-of-Function Mutations in the Voltage Sensor of Kv7.2 and Kv7.3 Potassium Channel Subunits, Journal of Neuroscience, vol.35, issue.9, pp.3782-3793, 2015.
DOI : 10.1523/JNEUROSCI.4423-14.2015

M. Milh, N. Boutry-kryza, J. Sutera-sardo, C. Mignot, S. Auvin et al., Similar early characteristics but variable neurological outcome of patients with a de novo mutation of KCNQ2, Orphanet Journal of Rare Diseases, vol.8, issue.1, p.80, 2013.
DOI : 10.1073/pnas.1216867110

URL : https://hal.archives-ouvertes.fr/inserm-00829466

A. L. Numis, M. Angriman, J. E. Sullivan, A. J. Lewis, P. Striano et al., KCNQ2 encephalopathy: Delineation of the electroclinical phenotype and treatment response, Neurology, vol.82, issue.4, pp.368-370, 2014.
DOI : 10.1212/WNL.0000000000000060

G. Orhan, M. Bock, D. Schepers, E. I. Llina, S. N. Reichel et al., mutations are associated with epileptic encephalopathy, Annals of Neurology, vol.53, issue.3, pp.382-394, 2014.
DOI : 10.1111/j.1528-1167.2012.03516.x

Z. Pan, T. Kao, Z. Horvath, J. Lemos, J. Y. Sul et al., A Common Ankyrin-G-Based Mechanism Retains KCNQ and NaV Channels at Electrically Active Domains of the Axon, Journal of Neuroscience, vol.26, issue.10, pp.2599-2613, 2006.
DOI : 10.1523/JNEUROSCI.4314-05.2006

H. C. Peters, H. Hu, O. Pongs, J. F. Storm, and D. Isbrandt, Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior, Nature Neuroscience, vol.26, issue.1, pp.51-60, 2005.
DOI : 10.1146/annurev.neuro.26.010302.081210

H. B. Rasmussen, C. Frøkjaer-jensen, C. S. Jensen, H. S. Jensen, N. K. Jorgensen et al., Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment, Journal of Cell Science, vol.120, issue.6, pp.953-963, 2007.
DOI : 10.1242/jcs.03396

V. F. Safiulina, P. Zacchi, M. Taglialatela, Y. Yaari, and E. Cherubini, Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus, The Journal of Physiology, vol.95, issue.22, pp.5437-5453, 2008.
DOI : 10.1152/jn.01333.2005

M. M. Shah, M. Migliore, I. Valencia, E. C. Cooper, and D. A. Brown, Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons, Proceedings of the National Academy of Sciences, vol.1, issue.1, pp.7869-7874, 2008.
DOI : 10.1385/NI:1:1:135

M. M. Shah, M. Migliore, and D. A. Brown, Differential effects of Kv7 (M-) channels on synaptic integration in distinct subcellular compartments of rat hippocampal pyramidal neurons, The Journal of Physiology, vol.95, issue.24, pp.6029-6038, 2011.
DOI : 10.1152/jn.01333.2005

N. A. Singh, C. Charlier, D. Stauffer, B. R. Dupont, R. J. Leach et al., A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns, Nature Genetics, vol.36, issue.1, pp.25-29, 1998.
DOI : 10.1038/ng1094-136

H. Soh, R. Pant, J. J. Loturco, and A. V. Tzingounis, Conditional Deletions of Epilepsy-Associated KCNQ2 and KCNQ3 Channels from Cerebral Cortex Cause Differential Effects on Neuronal Excitability, Journal of Neuroscience, vol.34, issue.15, pp.5311-5321, 2014.
DOI : 10.1523/JNEUROSCI.3919-13.2014

M. V. Soldovieri, P. Castaldo, L. Iodice, F. Miceli, V. Barrese et al., Decreased Subunit Stability as a Novel Mechanism for Potassium Current Impairment by a KCNQ2 C Terminus Mutation Causing Benign Familial Neonatal Convulsions, Journal of Biological Chemistry, vol.22, issue.1, pp.418-428, 2006.
DOI : 10.1016/j.jns.2004.03.001

M. V. Soldovieri, N. Boutry-kryza, M. Milh, D. Doummar, B. Heron et al., Mutations in a Large Cohort of Families with Benign Neonatal Epilepsy: First Evidence for an Altered Channel Regulation by Syntaxin-1A, Human Mutation, vol.54, issue.3, pp.356-367, 2014.
DOI : 10.1111/epi.12089

O. K. Steinlein, C. Conrad, and B. Weidner, Benign familial neonatal convulsions: Always benign?, Epilepsy Research, vol.73, issue.3, pp.245-249, 2007.
DOI : 10.1016/j.eplepsyres.2006.10.010

H. S. Wang, Z. Pan, W. Shi, B. S. Brown, R. S. Wymore et al., KCNQ2 and KCNQ3 Potassium Channel Subunits: Molecular Correlates of the M-Channel, Science, vol.282, issue.5395, pp.1890-1893, 1998.
DOI : 10.1126/science.282.5395.1890

S. Weckhuysen, S. Mandelstam, A. Suls, D. Audenaert, T. Deconinck et al., KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy, Annals of Neurology, vol.25, issue.1, pp.15-25, 2012.
DOI : 10.1523/JNEUROSCI.0128-05.2005

H. Wen and I. B. Levitan, Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels, J. Neurosci, vol.22, pp.7991-8001, 2002.

Q. Xiong, H. Sun, Y. Zhang, F. Nan, and M. Li, Combinatorial augmentation of voltage-gated KCNQ potassium channels by chemical openers, Proceedings of the National Academy of Sciences, vol.569, issue.1, pp.3128-3133, 2008.
DOI : 10.1113/jphysiol.2005.094995

C. Yue and Y. Yaari, Axo-Somatic and Apical Dendritic Kv7/M Channels Differentially Regulate the Intrinsic Excitability of Adult Rat CA1 Pyramidal Cells, Journal of Neurophysiology, vol.95, issue.6, pp.3480-3495, 2006.
DOI : 10.1152/jn.01333.2005