S. Maljevic and H. Lerche, Potassium channel genes and benign familial neonatal epilepsy, Prog Brain Res, vol.213, pp.17-53, 2014.
DOI : 10.1016/B978-0-444-63326-2.00002-8

T. Jentsch, Neuronal KCNQ potassium channels: physiology and role in disease, Nature Reviews Neuroscience, vol.1, issue.1, pp.21-30, 2000.
DOI : 10.1038/35036198

J. Devaux, K. Kleopa, and E. Cooper, KCNQ2 Is a Nodal K+ Channel, Journal of Neuroscience, vol.24, issue.5, pp.1236-1244, 2004.
DOI : 10.1523/JNEUROSCI.4512-03.2004

URL : http://www.jneurosci.org/content/jneuro/24/5/1236.full.pdf

M. Shah, M. Migliore, and I. Valencia, Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons, Proceedings of the National Academy of Sciences, vol.1, issue.1, pp.7869-7874, 2008.
DOI : 10.1385/NI:1:1:135

A. Battefeld, B. Tran, and J. Gavrilis, Heteromeric Kv7.2/7.3 Channels Differentially Regulate Action Potential Initiation and Conduction in Neocortical Myelinated Axons, Journal of Neuroscience, vol.34, issue.10, pp.3719-3732, 2014.
DOI : 10.1523/JNEUROSCI.4206-13.2014

G. Orhan, M. Bock, and D. Schepers, mutations are associated with epileptic encephalopathy, Annals of Neurology, vol.53, issue.3, pp.382-394, 2014.
DOI : 10.1111/j.1528-1167.2012.03516.x

A. Abidi, J. Devaux, and F. Molinari, A recurrent KCNQ2 pore mutation causing early onset epileptic encephalopathy has a moderate effect on M current but alters subcellular localization of Kv7 channels, Neurobiology of Disease, vol.80, pp.80-92, 2015.
DOI : 10.1016/j.nbd.2015.04.017

F. Miceli, M. Soldovieri, and P. Ambrosino, Early-Onset Epileptic Encephalopathy Caused by Gain-of-Function Mutations in the Voltage Sensor of Kv7.2 and Kv7.3 Potassium Channel Subunits, Journal of Neuroscience, vol.35, issue.9, pp.3782-3793, 2015.
DOI : 10.1523/JNEUROSCI.4423-14.2015

M. Milh, N. Boutry-kryza, and J. Sutera-sardo, Similar early characteristics but variable neurological outcome of patients with a de novo mutation of KCNQ2, Orphanet Journal of Rare Diseases, vol.8, issue.1, p.80, 2013.
DOI : 10.1073/pnas.1216867110

URL : https://hal.archives-ouvertes.fr/inserm-00829466

S. Weckhuysen, S. Mandelstam, and A. Suls, KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy, Annals of Neurology, vol.25, issue.1, pp.15-25, 2012.
DOI : 10.1523/JNEUROSCI.0128-05.2005

S. Weckhuysen, V. Ivanovic, and R. Hendrickx, Extending the KCNQ2 encephalopathy spectrum: Clinical and neuroimaging findings in 17 patients, Neurology, vol.81, issue.19, pp.1697-1703, 2013.
DOI : 10.1212/01.wnl.0000435296.72400.a1

T. Kanaumi, S. Takashima, and H. Iwasaki, Developmental changes in KCNQ2 and KCNQ3 expression in human brain: Possible contribution to the age-dependent etiology of benign familial neonatal convulsions, Brain and Development, vol.30, issue.5, pp.362-369, 2008.
DOI : 10.1016/j.braindev.2007.11.003

R. Khazipov and H. Luhmann, Early patterns of electrical activity in the developing cerebral cortex of humans and rodents, Trends in Neurosciences, vol.29, issue.7, pp.414-418, 2006.
DOI : 10.1016/j.tins.2006.05.007

URL : https://hal.archives-ouvertes.fr/inserm-00483896

M. Minlebaev, M. Colonnese, and T. Tsintsadze, Early Gamma Oscillations Synchronize Developing Thalamus and Cortex, Science, vol.86, issue.3, pp.226-229, 2011.
DOI : 10.1152/physrev.00030.2005

URL : http://www.inmed.univ-mrs.fr/maj/upload/publications/Minlebaev Science 2011.pdf

S. Marguet, V. Le-schulte, and A. Merseburg, Treatment during a vulnerable developmental period rescues a genetic epilepsy, Nature Medicine, vol.25, issue.12, pp.1436-1444, 2015.
DOI : 10.1016/j.bbr.2011.03.040