B. Mel and J. Schiller, On the Fight Between Excitation and Inhibition: Location Is Everything, Science Signaling, vol.13, issue.3, p.44, 2004.
DOI : 10.1016/S0959-4388(03)00075-8

R. Cossart, C. Bernard, and Y. Ben-ari, Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies, Trends in Neurosciences, vol.28, issue.2, pp.108-115, 2005.
DOI : 10.1016/j.tins.2004.11.011

URL : https://hal.archives-ouvertes.fr/inserm-00484541

D. Lewis, A. Curley, J. Glausier, and D. Volk, Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia, Trends in Neurosciences, vol.35, issue.1, pp.57-67, 2012.
DOI : 10.1016/j.tins.2011.10.004

A. Lerner, A. Bagic, J. Simmons, Z. Mari, and O. Bonne, Widespread abnormality of the ??-aminobutyric acid-ergic system in Tourette syndrome, Brain, vol.154, issue.6, pp.1926-1936, 2012.
DOI : 10.1016/0306-4522(88)90036-X

J. Guy, H. Cheval, J. Selfridge, and A. Bird, The Role of MeCP2 in the Brain, Annual Review of Cell and Developmental Biology, vol.27, issue.1, pp.631-652, 2011.
DOI : 10.1146/annurev-cellbio-092910-154121

R. Guerrini and E. Parrini, -gene-related encephalopathies, Epilepsia, vol.52, issue.Suppl. 1, pp.2067-2078, 2012.
DOI : 10.1016/j.ejmg.2009.09.004

S. Ide, M. Itoh, and Y. Goto, Defect in normal developmental increase of the brain biogenic amine concentrations in the mecp2-null mouse, Neuroscience Letters, vol.386, issue.1, pp.14-17, 2005.
DOI : 10.1016/j.neulet.2005.05.056

M. Lang, R. Wither, J. Brotchie, C. Wu, and L. Zhang, Selective preservation of MeCP2 in catecholaminergic cells is sufficient to improve the behavioral phenotype of male and female Mecp2-deficient mice, Human Molecular Genetics, vol.171, issue.1, pp.358-371, 2013.
DOI : 10.1016/j.jneumeth.2008.03.001

N. Panayotis, A. Ghata, L. Villard, and J. Roux, Biogenic amines and their metabolites are differentially affected in the Mecp2-deficient mouse brain, BMC Neuroscience, vol.12, issue.1, p.47, 2011.
DOI : 10.1016/j.neuropharm.2004.02.005

URL : https://hal.archives-ouvertes.fr/inserm-00668420

N. Panayotis, M. Pratte, A. Borges-correia, A. Ghata, and L. Villard, Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse, Neurobiology of Disease, vol.41, issue.2, pp.385-397, 2011.
DOI : 10.1016/j.nbd.2010.10.006

URL : https://hal.archives-ouvertes.fr/hal-01668685

J. Roux, N. Panayotis, E. Dura, and L. Villard, Progressive noradrenergic deficits in the locus coeruleus of Mecp2 deficient mice, Journal of Neuroscience Research, vol.25, pp.1500-1509, 2010.
DOI : 10.1113/jphysiol.2005.099325

J. Roux and L. Villard, Biogenic Amines in Rett Syndrome: The Usual Suspects, Behavior Genetics, vol.25, issue.1, pp.59-75, 2010.
DOI : 10.1016/S0387-7604(12)80329-9

R. Samaco, C. Mandel-brehm, H. Chao, C. Ward, and S. Fyffe-maricich, Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities, Proceedings of the National Academy of Sciences, vol.59, issue.6, pp.21966-21971, 2009.
DOI : 10.1016/j.neuron.2008.07.030

M. Santos, T. Summavielle, A. Teixeira-castro, A. Silva-fernandes, and S. Duarte-silva, Monoamine deficits in the brain of methyl-CpG binding protein 2 null mice suggest the involvement of the cerebral cortex in early stages of Rett syndrome, Neuroscience, vol.170, issue.2, pp.453-467, 2010.
DOI : 10.1016/j.neuroscience.2010.07.010

J. Viemari, J. Roux, A. Tryba, V. Saywell, and H. Burnet, Mecp2 Deficiency Disrupts Norepinephrine and Respiratory Systems in Mice, Journal of Neuroscience, vol.25, issue.50, pp.11521-11530, 2005.
DOI : 10.1523/JNEUROSCI.4373-05.2005

URL : https://hal.archives-ouvertes.fr/hal-00287790

G. Calfa, J. Hablitz, and L. Pozzo-miller, mutant mice revealed by voltage-sensitive dye imaging, Journal of Neurophysiology, vol.21, issue.4, pp.1768-1784, 2011.
DOI : 10.1002/hipo.20389

H. Chao, H. Zoghbi, and C. Rosenmund, MeCP2 Controls Excitatory Synaptic Strength by Regulating Glutamatergic Synapse Number, Neuron, vol.56, issue.1, pp.58-65, 2007.
DOI : 10.1016/j.neuron.2007.08.018

URL : https://doi.org/10.1016/j.neuron.2007.08.018

V. Dani, Q. Chang, A. Maffei, G. Turrigiano, and R. Jaenisch, Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett Syndrome, Proceedings of the National Academy of Sciences, vol.24, issue.37, pp.12560-12565, 2005.
DOI : 10.1523/JNEUROSCI.1766-04.2004

V. Dani and S. Nelson, Intact Long-Term Potentiation but Reduced Connectivity between Neocortical Layer 5 Pyramidal Neurons in a Mouse Model of Rett Syndrome, Journal of Neuroscience, vol.29, issue.36, pp.11263-11270, 2009.
DOI : 10.1523/JNEUROSCI.1019-09.2009

Z. Zhang, J. Zak, and H. Liu, MeCP2 Is Required for Normal Development of GABAergic Circuits in the Thalamus, Journal of Neurophysiology, vol.17, issue.5, pp.2470-2481, 2010.
DOI : 10.1016/j.neuron.2006.09.037

D. Kline, M. Ogier, D. Kunze, and D. Katz, Exogenous Brain-Derived Neurotrophic Factor Rescues Synaptic Dysfunction in Mecp2-Null Mice, Journal of Neuroscience, vol.30, issue.15, pp.5303-5310, 2010.
DOI : 10.1523/JNEUROSCI.5503-09.2010

L. Medrihan, E. Tantalaki, G. Aramuni, V. Sargsyan, and I. Dudanova, Early Defects of GABAergic Synapses in the Brain Stem of a MeCP2 Mouse Model of Rett Syndrome, Journal of Neurophysiology, vol.99, issue.1, pp.112-121, 2008.
DOI : 10.1126/science.1089071

G. Stettner, P. Huppke, C. Brendel, D. Richter, and J. Gartner, knockout mice, The Journal of Physiology, vol.25, issue.Suppl. 1, pp.863-876, 2007.
DOI : 10.1002/ana.410250109

P. Taneja, M. Ogier, G. Brooks-harris, D. Schmid, and D. Katz, Pathophysiology of Locus Ceruleus Neurons in a Mouse Model of Rett Syndrome, Journal of Neuroscience, vol.29, issue.39, pp.12187-12195, 2009.
DOI : 10.1523/JNEUROSCI.3156-09.2009

A. Abdala, M. Dutschmann, J. Bissonnette, and J. Paton, Correction of respiratory disorders in a mouse model of Rett syndrome, Proceedings of the National Academy of Sciences, vol.59, issue.4 Pt 1, pp.18208-18213, 2010.
DOI : 10.1203/01.pdr.0000203157.31924.4a

M. Fischer, J. Reuter, F. Gerich, B. Hildebrandt, and S. Hagele, Enhanced Hypoxia Susceptibility in Hippocampal Slices From a Mouse Model of Rett Syndrome, Journal of Neurophysiology, vol.101, issue.2, pp.1016-1032, 2009.
DOI : 10.1126/science.1089071

P. Moretti, J. Levenson, F. Battaglia, R. Atkinson, and R. Teague, Learning and Memory and Synaptic Plasticity Are Impaired in a Mouse Model of Rett Syndrome, Journal of Neuroscience, vol.26, issue.1, pp.319-327, 2006.
DOI : 10.1523/JNEUROSCI.2623-05.2006

E. Nelson, M. Bal, E. Kavalali, and L. Monteggia, Selective impact of MeCP2 and associated histone deacetylases on the dynamics of evoked excitatory neurotransmission, Journal of Neurophysiology, vol.22, issue.1, pp.193-201, 2011.
DOI : 10.1002/hipo.20389

L. Zhang, J. He, D. Jugloff, and J. Eubanks, The MeCP2-null mouse hippocampus displays altered basal inhibitory rhythms and is prone to hyperexcitability, Hippocampus, vol.18, issue.3, pp.294-309, 2008.
DOI : 10.1113/jphysiol.1990.sp018200

L. Wood, N. Gray, Z. Zhou, M. Greenberg, and G. Shepherd, Synaptic Circuit Abnormalities of Motor-Frontal Layer 2/3 Pyramidal Neurons in an RNA Interference Model of Methyl-CpG-Binding Protein 2 Deficiency, Journal of Neuroscience, vol.29, issue.40, pp.12440-12448, 2009.
DOI : 10.1523/JNEUROSCI.3321-09.2009

L. Wood and G. Shepherd, Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome, Neurobiology of Disease, vol.38, issue.2, pp.281-287, 2010.
DOI : 10.1016/j.nbd.2010.01.018

M. Kron, C. Howell, I. Adams, M. Ransbottom, and D. Christian, Brain Activity Mapping in Mecp2 Mutant Mice Reveals Functional Deficits in Forebrain Circuits, Including Key Nodes in the Default Mode Network, that are Reversed with Ketamine Treatment, Journal of Neuroscience, vol.32, issue.40, pp.13860-13872, 2012.
DOI : 10.1523/JNEUROSCI.2159-12.2012

J. Guy, B. Hendrich, M. Holmes, J. Martin, and A. Bird, A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome, Nature Genetics, vol.8, issue.3, pp.322-326, 2001.
DOI : 10.1007/s003359900551

J. Roux, E. Dura, and L. Villard, Tyrosine hydroxylase deficit in the chemoafferent and the sympathoadrenergic pathways of the Mecp2 deficient mouse, Neuroscience Letters, vol.447, issue.1, pp.82-86, 2008.
DOI : 10.1016/j.neulet.2008.09.045

L. Ricceri, D. Filippis, B. Laviola, and G. , Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches, Behavioural Pharmacology, vol.19, issue.5-6, pp.501-517, 2008.
DOI : 10.1097/FBP.0b013e32830c3645

M. Pratte, N. Panayotis, A. Ghata, L. Villard, and J. Roux, Progressive motor and respiratory metabolism deficits in post-weaning Mecp2-null male mice, Behavioural Brain Research, vol.216, issue.1, pp.313-320, 2011.
DOI : 10.1016/j.bbr.2010.08.011

N. Palkovits and M. Brownstein, Maps and guide to microdissection of rat brain, 1988.

G. Paxinos and K. Franklin, The mouse brain in stereotaxic coordinates, Academic, 2001.

J. Roux, J. Mamet, D. Perrin, J. Peyronnet, and C. Royer, Neurochemical development of the brainstem catecholaminergic cell groups in rat, J Neural Transm, vol.110, pp.51-65, 2003.

V. Sauvinet, S. Parrot, N. Benturquia, E. Bravo-moraton, and B. Renaud, In vivo simultaneous monitoring of??-aminobutyric acid, glutamate, andL-aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: Analytical developments andin vitro/in vivo validations, ELECTROPHORESIS, vol.24, issue.18, pp.3187-3196, 2003.
DOI : 10.1002/elps.200305565

K. Livak and T. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???????CT Method, Methods, vol.25, issue.4, pp.402-408, 2001.
DOI : 10.1006/meth.2001.1262

A. Coenen, E. Blezer, and E. Van-luijtelaar, Effects of the GABA-uptake inhibitor tiagabine on electroencephalogram, spike-wave discharges and behaviour of rats, Epilepsy Research, vol.21, issue.2, pp.89-94, 1995.
DOI : 10.1016/0920-1211(95)00015-3

C. Thoeringer, A. Erhardt, I. Sillaber, M. Mueller, and F. Ohl, Long-term anxiolytic and antidepressant-like behavioural effects of tiagabine, a selective GABA transporter-1 (GAT-1) inhibitor, coincide with a decrease in HPA system activity in C57BL/6 mice, Journal of Psychopharmacology, vol.30, issue.3, pp.733-743, 2010.
DOI : 10.1002/da.10099

L. Mcdonald, W. Sheppard, S. Staveley, B. Sohal, and F. Tattersall, Discriminative stimulus effects of tiagabine and related GABAergic drugs in rats, Psychopharmacology, vol.73, issue.suppl 6, pp.591-600, 2008.
DOI : 10.1007/s00213-008-1077-z

J. Roux, D. Zala, N. Panayotis, A. Borges-correia, and F. Saudou, Modification of Mecp2 dosage alters axonal transport through the Huntingtin/Hap1 pathway, Neurobiology of Disease, vol.45, issue.2, pp.786-795, 2012.
DOI : 10.1016/j.nbd.2011.11.002

URL : https://hal.archives-ouvertes.fr/hal-01668679

Y. Ben-ari, I. Khalilov, K. Kahle, and E. Cherubini, The GABA Excitatory/Inhibitory Shift in Brain Maturation and Neurological Disorders, The Neuroscientist, vol.4, issue.3, pp.467-486, 2012.
DOI : 10.1016/j.eplepsyres.2008.02.005

M. Chahrour and H. Zoghbi, The Story of Rett Syndrome: From Clinic to Neurobiology, Neuron, vol.56, issue.3, pp.422-437, 2007.
DOI : 10.1016/j.neuron.2007.10.001

N. Rowley, K. Madsen, A. Schousboe, S. White, and H. , Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control, Neurochemistry International, vol.61, issue.4, pp.546-558, 2012.
DOI : 10.1016/j.neuint.2012.02.013

B. Stanley, K. Urstadt, J. Charles, and T. Kee, Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake, Physiology & Behavior, vol.104, issue.1, pp.40-46, 2011.
DOI : 10.1016/j.physbeh.2011.04.046

S. Akbarian, R. Chen, J. Gribnau, T. Rasmussen, and H. Fong, Expression Pattern of the Rett Syndrome Gene MeCP2 in Primate Prefrontal Cortex, Neurobiology of Disease, vol.8, issue.5, pp.784-791, 2001.
DOI : 10.1006/nbdi.2001.0420

H. Chao, H. Chen, R. Samaco, M. Xue, and M. Chahrour, Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes, Nature, vol.72, issue.7321, pp.263-269, 2010.
DOI : 10.1001/archpsyc.1995.03950160008002

A. Viola, V. Saywell, L. Villard, P. Cozzone, and N. Lutz, Metabolic Fingerprints of Altered Brain Growth, Osmoregulation and Neurotransmission in a Rett Syndrome Model, PLoS ONE, vol.330, issue.1, p.157, 2007.
DOI : 10.1371/journal.pone.0000157.s001

URL : https://hal.archives-ouvertes.fr/hal-00169296

Y. Chang and D. Gottlieb, Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase, J Neurosci, vol.8, pp.2123-2130, 1988.

K. Obata, T. Fukuda, S. Konishi, F. Ji, and H. Mitoma, Synaptic localization of the 67,000 mol. wt isoform of glutamate decarboxylase and transmitter function of GABA in the mouse cerebellum lacking the 65,000 mol. wt isoform, Neuroscience, vol.93, issue.4, pp.1475-1482, 1999.
DOI : 10.1016/S0306-4522(99)00274-2

C. Buddhala, C. Hsu, and J. Wu, A novel mechanism for GABA synthesis and packaging into synaptic vesicles, Neurochemistry International, vol.55, issue.1-3, pp.9-12, 2009.
DOI : 10.1016/j.neuint.2009.01.020

A. Schousboe and H. Waagepetersen, Glial Modulation of GABAergic and Glutamat ergic Neurotransmission, Current Topics in Medicinal Chemistry, vol.6, issue.10, pp.929-934, 2006.
DOI : 10.2174/156802606777323719

M. Nguyen, F. Du, C. Felice, X. Shan, and A. Nigam, MeCP2 Is Critical for Maintaining Mature Neuronal Networks and Global Brain Anatomy during Late Stages of Postnatal Brain Development and in the Mature Adult Brain, Journal of Neuroscience, vol.32, issue.29, pp.10021-10034, 2012.
DOI : 10.1523/JNEUROSCI.1316-12.2012

S. Ricciardi, E. Boggio, S. Grosso, G. Lonetti, and G. Forlani, Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model, Human Molecular Genetics, vol.27, issue.6, pp.1182-1196, 2011.
DOI : 10.1016/j.mcn.2004.07.006

T. Klausberger and P. Somogyi, Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations, Science, vol.94, issue.2, pp.53-57, 2008.
DOI : 10.1152/jn.00069.2005

M. Erlander, N. Tillakaratne, S. Feldblum, N. Patel, and A. Tobin, Two genes encode distinct glutamate decarboxylases, Neuron, vol.7, issue.1, pp.91-100, 1991.
DOI : 10.1016/0896-6273(91)90077-D

M. Esclapez, N. Tillakaratne, D. Kaufman, A. Tobin, and C. Houser, Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms, J Neurosci, vol.14, pp.1834-1855, 1994.

R. Sloviter, M. Dichter, T. Rachinsky, E. Dean, and J. Goodman, Basal expression and induction of glutamate decarboxylase GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus, The Journal of Comparative Neurology, vol.46, issue.4, pp.593-618, 1996.
DOI : 10.1128/MCB.14.11.7535

H. Jin, H. Wu, G. Osterhaus, J. Wei, and K. Davis, Demonstration of functional coupling between ??-aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles, Proceedings of the National Academy of Sciences, vol.94, issue.21, pp.4293-4298, 2003.
DOI : 10.1073/pnas.94.21.11451

G. Mathews and J. Diamond, Neuronal glutamate uptake Contributes to GABA synthesis and inhibitory synaptic strength, J Neurosci, vol.23, pp.2040-2048, 2003.

N. Danbolt, Glutamate uptake, Progress in Neurobiology, vol.65, issue.1, pp.1-105, 2001.
DOI : 10.1016/S0301-0082(00)00067-8

M. Lee, E. Mcgeer, and P. Mcgeer, Mechanisms of GABA release from human astrocytes, Glia, vol.116, issue.Part 3, pp.1600-1611, 2011.
DOI : 10.1007/s00702-009-0186-0

F. Sherif, L. Eriksson, and L. Oreland, GABA-transaminase activity in rat and human brain: regional, age and sex-related differences, Journal of Neural Transmission, vol.31, issue.2, pp.95-102, 1991.
DOI : 10.1007/BF01249113

J. Chatton, L. Pellerin, and P. Magistretti, GABA uptake into astrocytes is not associated with significant metabolic cost: Implications for brain imaging of inhibitory transmission, Proceedings of the National Academy of Sciences, vol.2, issue.6, pp.12456-12461, 2003.
DOI : 10.1016/0301-0082(92)90015-7

D. Lioy, S. Garg, C. Monaghan, J. Raber, and K. Foust, A role for glia in the progression of Rett???s syndrome, Nature, vol.59, issue.7357, pp.497-500, 2011.
DOI : 10.1016/j.biopsych.2005.07.025

Y. Okabe, T. Takahashi, C. Mitsumasu, K. Kosai, and E. Tanaka, Alterations of Gene Expression and Glutamate Clearance in Astrocytes Derived from an MeCP2-Null Mouse Model of Rett Syndrome, PLoS ONE, vol.280, issue.4, p.35354, 2012.
DOI : 10.1371/journal.pone.0035354.s005

I. Maezawa and L. Jin, Rett Syndrome Microglia Damage Dendrites and Synapses by the Elevated Release of Glutamate, Journal of Neuroscience, vol.30, issue.15, pp.5346-5356, 2010.
DOI : 10.1523/JNEUROSCI.5966-09.2010

K. Madsen, H. White, and A. Schousboe, Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs, Pharmacology & Therapeutics, vol.125, issue.3, pp.394-401, 2010.
DOI : 10.1016/j.pharmthera.2009.11.007